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FIPER: An Intelligent System for the Optimal Design of Highly Engineered Products

Michael W. Bailey, GE Aircraft Engines, Cincinnati, OH 45215
and William H. VerDuin, OAl, Cleveland, OH 44142

Abstract

This paper outlines the development of an advanced
design environment that invokes a new intelligent system
paradigm for the design of highly engineered products. The
paradigm of the CAD Master Model (MM) is extended with
the introduction of the Intelligent Master Model (IMM). The
use of knowledge based engineering tools captures why and
how of the design in addition to the what.

Turbine engine development is a highly coupled
disciplinary process. With ever increasing demands in life
cycle costs, environmental aspects (noise, emissions and
fuel consumption) and performance, the availability of
accurate analytical tools during the design process is a
given and ceases to be a discriminator between competitors.
The application of these tools and their automated
interaction in a robust computational environment may
determine the success or failure of a project by reducing
design cycle time and avoiding costly rework.

This paper describes pilot projects at GE Aircraft
Engines (GEAE) and the productivity metrics that justified
broader implementation within GEAE. Developed using the
UniGraphics CAD system for the design of aircraft engines,
this system is applicable to any highly engineered product.
This approach will, with the support of a four year $21.5M
NIST ATP (National Institute of Standards and Technology
Advanced Technology Program), be generalized in FIPER
(Federated Intelligent Product EnviRonment), a web based
environment that will support multi-disciplinary design and
optimization.

TheProblem

The development of robust and optimal, highly
engineered products and processes in today’s environment
of step-function reductions in cycle time, cost take-out, and
improved performance seriously tax the capabilities of
today’ s design systems. Further exacerbating the problem is
the need to improve and control quality, for both internally
manufactured parts and materials and parts produced
through supply chains. Since products are now designed,
manufactured and serviced at geographically disparate
locations, the ability to share relevant product dataiscritical.

The Solution

FIPER presents a solution in the form of an Integrated
Multidisciplinary Design System which

Exploits the concept of the IMM, permitting context

specific views of the MM

Seamlessly integrates relevant technologies to enable
rapid instantiation and simulation-based evaluation of
products and processes

Vision: Integrated Multidisciplinary Design Environment

The integrated multidisciplinary design environment
under development will enable users to define process maps
and rapidly integrate their own proprietary product-specific
design and simulation tools through visual programming
techniques. It will automatically provide access to a set of
technologies including CAD systems and low and high
fidelity analysis modules, as well as Multidisciplinary
Optimization (MDO) and Robust Design technologies. It will
exploit Knowledge Based Engineering to capture rules and
best practices that can drive product definition through the
(IMM)

Intelligent Master M odel

The Intelligent Master Model (Figure 1) is a major
enhancement to the Master Modeling concept. Knowledge
Based Engineering (KBE) is fused with Product Control
Structure (PCS), conventiona MM and Linked Model
Environment (LME) to collectively render it an Intelligent
Master Model. The IMM captures the intent behind the
product design by representing the why and how, in
addition to the what of a design. The geometric description
isonly one view of the information associated with the total
product model. The IMM can also contain part
dependencies, geometric and non-geometric attributes,
manufacturing producibility and cost constraints. IMM can
provide access to external databases, and can be integrated
with proprietary and commercial codes through the LME.

Intelligant Master Model

VAN

Product Master Linked Model
Control
Structuy Maodel Environment
CAD System limteraperability
The IMM can

Figurel. Intelligent Master M odel



capture and archive corporate design practices as well as
design and manufacturing engineering expertise. This
knowledge can enable less experienced engineers to
consistently produce correct first time designs.

The IMM captures the process for generating the PCS
at the conceptual and preliminary design level, which then
flows the critical information to the detail design and
manufacturing. The IMM uses its knowledge base to enable
parametric scaling of designs in a top down fashion. When
parameters must be computed by execution of simulation
codes, the IMM manages this execution by working with
process integration tools.

TheMagster Modd

The Master Model captures the requisite information,
geometric and non-geometric, to enable context-specific
views of necessary design, manufacture, test, and service
data. A product design system that supports early
reguirements definition and flow-down demands that the
underlying representation be flexible to geometric, attribute,
feature and knowledge-based changes. The traditional CAD
representation is flexible only in a geometric sense.

The Master Model (Figure 2) at the lowest or geometric
level consists of parametric geometry features such as
primitives, extrusions, holes, etc., which form the basic
product description. Parameters associated with these
geometric features are a subset of the key characteristics
which are manipulated to define the product. At this level,
the key characteristics include the traditional concepts of
dimensionality (length, radius, angle, etc.), as well as those
concepts that follow from knowledge-based solid modeling
such as offset, spatial alignment, and perpendicularity
constraints. Additionally, the existence of a feature is itself
an attribute which may be turned on or off as needed to
represent the part to varying fidelity levels. For example a
bolthole is typically present during a stress analysis but
omitted during acomputational fluid dynamics analysis. This
simplification would be part of the context model, thus
creating a context-specific view of the geometry using
feature suppression.
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Figure 3. Feature Based M odeling

Using parametric feature-based technology, models are
constructed by initially creating simple parametric block
shapes to which features (e.g. flanges) are attached.
Compound blends are then created and added to the model
together with standard features such as radii and chamfers,
to create the axisymetric solid. Finally, non-axisymetric
features such as holes and slots are then added as shown in
Figure 3. This feature-based approach is consistent with
feature based analytical model building and cost estimating,
while also providing feature suppression functionality.

The initial approach to KBE was the encapsulation of
product rules within UniGraphics XESS spreadsheets. These
spreadsheets are linked to the geometry such that design
rules and practices are parameterized to drive geometry.
External codes such as those for disk design could also be
executed. Thus an increase in flow thorough the compressor
would initiate an aerodynamic resizing of blades and vanes
resulting in a blade platform and attachment resizing
combined with a disk redesign due to increased centrifugal
loads. The whole compressor would thus “rubber band” or
parametrically expand to accommodate increased flow.

TheProduct Control Structure

The PCS facilitates top-down control of the design,
allowing the engineer to layout the system configuration and
control changes in atop-down fashion. It facilitates what-if
analysis at the conceptual, preliminary, and detailed design
levels by alowing the designer to make parametric changes
or to evaluate alternate configurations. This encourages
design reuse and enforces standardization in the design
process.

The PCS is a hierarchical decomposition of the product
into its systems, subsystems and components (Figure 4).
These are represented by high-level product attributes and
key datum planes and axes to capture their spatial location
and orientation. Once the top-level datums have been
established and referenced by the subsystems, each
subsystem can be designed independently in a distributed
manner and later be automatically assembled. Within the
PCS, components may be represented by preliminary,
simplified geometry (e.g., 2-D cross-sections) or just datums.
The cross-sections are picked from alibrary of cross-section



types based on rules. The values for the parameters that
define a cross-section are determined using
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rules captured in the knowledge base. The leaf nodes of the
PCS become the seed parts for the bottom-up design of the
product into a 3-D assembly. The parts contain 3-D features
to capture additional design and manufacturing intent.
Everything is fully associative, and thus all changes to the
PCS propagate throughout the model.

TheLinked Modd Environment

Disciplines such as stress analysis, heat transfer analysis,
fluids or combustion analysis, and manufacturing and cost

prediction each use their own abstraction of the physical
model of the product. Within one discipline, several context-
specific views may exist as the design evolves. For example,

2-D axisymmetric stress analysis models and detailed 3-D
stress analysis models of various levels of refinement for the
individual components of a jet engine are required. Each of
these analysis models is associated with one or more
simulation tools or codes, from simple response surfaces or
performance maps during the conceptual design phase, to
more complex analysis codes for detailed design,



manufacturing process simulation, and cost modeling. This
provides the promise of geometric zooming. Historicaly,



.dna.'j.rsj's “Zooming " Cubg

A
A 3-0

653‘1_"’-;'3,»’ / 7 :"’ 7
& P il Ay e s
ik i

0D/ 4
B ,If .-\-\-\--\""—-\.._
=g R S
EE Fracture-{— ¥ (L
) i
:ﬁ_‘g | Mpact +—e | !
ét Creep+—w i f}
| o~
Medal - -
/
Static-—e | o
e = i o
& ¢ ! g
':’:‘.JIH ! ,f'r /'I .-"I:. ."'IIII
Discipline

Tvpical Process Map
Wrapper or Sequence of
—— Simulation Tools
., ComBinations
\\ of indivigualy Simukation
wrapped “tubes” or Code
‘ simwalion codas 1
Simulation
Coda 2
—_ ——
m Simulation | | Simulation
Code 3 Code 4
— —
/ Simultion
e & Coda &

Figure 6. The Simulation Engine

these models exist in a heterogeneous environment, without
explicit connections between them. Thus, a design change
demanded by one disciplinary group has to be manually
incorporated into all the various models of the product that
co-exist; a process that is both tedious and error prone.
Within the LME (Figure 5) a product’s analysis and process
models are linked to the Master Model so that all models are
automatically synchronized to a single Master Model. Thus,
aprocessis established by which design changes caused by
one discipline are fed back to the Master Model. A Product
Data Management (PDM) system tracks the design revisions
and the associated analysis views or context models of the
product.

Simulation Engine

Anintegral part of the LME isthe simulation engine
where the analysis tools themselves are wrapped for ease of
reuse in a plug-and-pay architecture. To achieve robust and
optimal designs, iterative analysisis required. Therefore,
ready access to the requisite analysis codes and process
mapsis essential. The Simulation Engine (Figure 6) provides:
- a programmable mechanism to specify and control the

execution of the analysis process

amechanism to enable usersto easily wrap codes

an ensemble of pre-wrapped multidisciplinary, variable-

fidelity, product-specific analysistools

Individual codes and process maps to be linked to
the IMM for either manual or automatic execution under
program control.
The NASA Glenn Research Center’'s Numerical Propulsion
System Simulator (NPSS) has used a similar cube

representation to show the interconnectivity of functional
codes, multiple levels of analysis, and zooming to represent
their computer-based engine in a test cell. The Simulation
Engine is a generaization of this concept for generic
products.

Design For Six Sigma

The goal of Design For Six Sigma (DFSS, 3.4 defects per
million opportunities) is to create products and processes
which are a Six Sigma levels of performance,
manufacturability, reliability and cost. DFSS is based on an
orderly process which identifies and flows down Critical to
Quality (CTQ) characteristics for the product, process or
service. This enables quality measures to be driven into the
product during the early design phases where the cost of
implementing changes is relatively low in comparison to
fixing the problems | ater in the product life cycle. Key design
factors for each CTQ are identified and statistical
performance models are developed. Modeling, simulation,
Design of Experiments (DoE) and analysis are usually
employed to develop the statistical models. The essence of
DFSS is to migrate from a deterministic to a probabilistic
design approach. DFSS is generally focused on shifting
means for CTQ’s and reducing variances about means so
that customer expectations are met at minimum cost.

Robust Design is an intrinsic part of DFSS. Traditionally
optimal design and robust design were viewed as
independent technologies, but in fact there is great
synergism and common core concepts that can be exploited
to achieve
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optimal and robust designs for products and processes.
Optimality and robustness often have competing objectives.
The focus of the robust optimization problem is to
simultaneously optimize the performance (mean of the
response) and minimize the variation. In other words, a
maximization problem would not merely strive for the highest
peak, but would strive for a high plateau. In practice this
represents a trade-off between Performance and Technical
Requirements, Reliability and Producibility (Figure 6). This
represents a paradigm shift in design methodology.

Background

There are many definitions of a Master Model. At GEAE the
definition is a single geometric representation, idealy 3-D,
created at concept using feature based parametric modeling
techniques in a linked associative environment, and utilized
through manufacturing. In addition there is an evolution of a
tight integration of all elements of a product creation,
manufacturing and support permitting true concurrency for
analysis and manufacturing since updates can be flowed
down to theindividual activitiesfrom the MM. An additional
requirement is the management of all types of data or
metadata within the Common Geometry environment. The
fusion of a conventionat MM with PCS, LME and KBE
resultsin an IMM, the next logical stepin CAD’sevolution.
Historically analysis codes were coupled together with
input and output files, geometry was provided as an output
as necessary, probably as an IGES file. The new approach is
to have geometry central or common to all processes and to
useit as adesign integrator. Thisfacilitates CAD integration
with analysis and manufacturing. Four years ago GE Aircraft

Engines started its Common Geometry initiative, based on
UniGraphics and commercial code to the extent possible. The
first year focused on strategy. Historically at GEAE
conceptual and preliminary design are accomplished using
simplifying assumptions in a unique set of tools. Changesin
the underlying assumptions and the lack of a rigorous
handoff to detail design often meant that the preliminary
design was repeated. Since business commitments are made
based on preliminary design this increased the risk of
meeting customer CTQ requirements. It is well understood
that 70 to 80% of a product’s cost is locked in during
conceptual and preliminary design. Previous efforts had
focused on productivity tools that relied heavily on
automation. The discovery of UG/WAVE with its top down
approach using a Control Structure meant it was possible to
drive the design using requirements providing functional
and spatial integration thereby making it possible to create
3-D solid models at the Conceptua/Preliminary Design
Phase. This combined with a tight integration of CAD with
analysis and manufacturing in LME would provide a truly
concurrent design environment.

During the second year three pilots were conducted to
demonstrate the technical feasibility and generate metrics for
the return on investment analysis necessary to move to a
broader implementation across the business. These pilots
focused on Conceptual/Preliminary design, Detailed design
and Manufacturing. Although these pilots addressed
different sections of the engine, success in individual areas
would provide confidence to proceed to a broader
implementation.



Heat Transfer Context Model

Turbine Rotor Assembly

Figure 8. LME Engineering Pilot

SOLID Pilot

The purpose of the SOLID (System Oriented Layout
with Integrated Design) pilot was to build a 3-D solid
geometry model of a compressor. This was constructed
using the UG/WAVE PCS. Model construction is of
paramount importance if productivity gains downstream are
to be realized. Constructing the model from features enables
suppression of selective features by downstream users
using context models or “views of geometry”. Traditional 2-
D axisymetric cross sections can still be generated from the
3-D solid. These would be completely associative to the
solid and would constitute an output instead of an input.
Thusthe
parameters that drive the 3-D solid would also drive the 2-D
cross section. Time invested in constructing the 3-D models
facilitates updates as the design evolves. By segregating out
the work that would be eliminated using the SOLID model
from the charging data from arecently completed program, it
was estimated that 34% would be saved at the
Conceptual/Preliminary design phase and 7% at the Detailed
Design phase.

A key element in the Integration of CAD with Analysis,
or any geometry dependent activity, is the creation of
context models. A Context model uses the concept of CAD
Assemblies to create a “view” of geometry. Just as it is
conventional CAD practice to combine parts into assemblies
building up into the complete system, it is possible to
combine geometry with context information in the form of an
assembly. Context in this application means the attachment
of information necessary to create a structural, thermal or
Computational Fluid Dynamics (CFD) model to geometric
entities. The rotor assembly could also be regarded as a
context model. This information could be boundary
conditions such as pressures, temperatures, loads and the
meshing strategy such as mesh seeds or mesh densities.
These attributes are applied to the geometric entities in the
CAD package.

This context information or “Tagging” should be robust
to parametric or non-topological changes and have some
robustness to topological changes. A longer term goal is to
apply these “Tags’ as the analysis model is built in the
meshing software, then export these to the CAD software for
storage. Currently they are applied in the CAD software. The
CAD assembly context model is imported into the meshing
software such as PATRAN, ANSY S or ICEM CFD to create
the application model. The heat transfer context model is
shown in Figure 8. From data accumulated during the pilot, it
was estimated that savings of 25% in Detailed Design were
possible.

In the manufacturing pilot the focus was using
manufacturing context models in conjunction with the 3-D
Master Model to generate in process planning and shapes,
tooling and Computer Numerically Controlled (CNC)
machining tapes. A Low Pressure turbine disk currently in
production was used. Note that in the manufacturing
environment the modeling works in the opposite sense to
detail design. In the detailed design features are added to the
model as the design progresses from conceptual through
preliminary and detail design; in manufacturing features are
removed consistent with manufacturing operations until the
raw material remains. Figure 9 shows the associated in-
process models and tooling together with the engineering
analysis, results and drawing creation. The pilot
demonstrated a 15% reduction in process development time
and an 80% reduction in process regeneration for parametric
changes. In addition the associated tooling was updated
when the model was changed.

Computer Measuring Machine (CMM) inspection
programs can also be generated from the process models.
This is another key context model use of the linked
associative environment. Aircraft engine manufacture
involves the machining of complex shapes from high
temperature alloys that “move” during the manufacturing
process. Thus it is important for process control to inspect
the process shapes to know what the dimensions are so



adjustments can be made to future machining operations. feedback loop.
This offers the possibility of a “real time” machining
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Incremental Approach to Development and Deployment

GEAE's incremental approach
deployment is shown in Figure 10.
Productivity ToolsyCommon Geometry was hetwork enabled
and automated serial tasks such as mesh creation on
individual parts. This can be described as the “run faster”
approach and is sub-optimal since it optimizes individual

to development and
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Management, Manufacturing Management, Supply Chain
Management and Services Management with databases,
parts lists, process flow, etc. It would provide the
infrastructure for subsequent devel opment.

e-Visualization represents an enhancement of e-PDM in that
it provides a visual collaborative environment incorporating
adigital mockup. It thus provides a visual representation of
the engineering assembly permitting spatial integration and
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partsin bottom-up design as opposed to the system design.
e-PDM focuses on Product Data Management (PDM) and is
Web enabled. PDM typically provides Engineering

is with functionality such as interference clearance and
removal envelope assessment.

Figure 11. Federated I ntegrated Design EnviRonment

e-Engineering builds on the benefits of e-PDM and e-
Visualization to provide an environment that supports
functional integration and analysis providing a top-down or
"run smarter” design environment.

The recent FIPER project award by NIST ATP will
provide such an environment. Drawing on the experience
and qualifications of the FIPER team members and
leveraging GE's Corporate commitment to Design For Six
Sigma methodology and products, the proposed program
will result in the development, demonstration and transition
of advanced tools and technology. Key elements of the
NIST ATPinclude:

Development of an extensible, standards-based plug

and play, Web-based architecture to enable the creation

of Six Sigma products and processes.

Development and major enhancement of a set of

advanced core technol ogies necessary to realize Design

For Six Sigma, most notably Intelligent Master

Modeling, Knowledge Based Engineering, Robust

Design, Multidisciplinary Design and Optimization, Cost

Modeling and Producibility.

Demonstration of FIPER on a diverse set of demanding

applications, which span conceptual design, through

10

manufacturing  for and
components.

Dissemination of the technology through a well
founded commercialization plan, complimentary teaming,
Web-based access, publications, educational programs

and the creation of an early adoption program.

systems,  subsystems

Thus FIPER represents a paradigm shift for product
development through the introduction of a standards based
product development environment Conceptually the FIPER
environment is described in Figure 11 and in more detail in
Referencel.

The team was chosen for their complimentary roles in
achieving the overall FIPER objectives. GEAE is a complex
engineering system developer and manufacturer and a
Unigraphics CAD system user. Parker Hannifin is a complex
aircraft engine and aircraft subsystem and component
supplier and a ProEngineer CAD system user.
BFGoodrichAerospace is a complex aircraft sub-system
and component supplier and CATIA CAD system user.
Thus with CAD interoperability being one of the major
FIPER initiatives, three out of the four mgjor CAD systemsis
represented. The fourth, SDRC IDEAS Master Series will be
addressed at a later stage, possibly through the early



adopter program. GE Corporate Research and Development
(CR&D) has been developing the technology associated
with IMM, KBE, MDO and DFSS for a number of years.
Engineous Software Inc. is the commercidizer for the FIPER
software and their current product isiSIGHT, an engineering
analysis process integration and optimization tool. Ohio
University is providing computer system integration
software wrapping tools and is developing a cost model that
will be integrated with the IMM. Stanford University is
creating producibility models that will be integrated with the
IMM. OAI (Ohio Aerospace Institute) is the sponsoring
organization and provides program administration. The
complimentary teaming are key to the technica and
commercial success of the FIPER project.
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ABSTRACT

This paper is a first step to formal comparisons of several
leading optimization algorithms, establishing guidance to
practitioners for when to use or not use a particular method.
The focus in this paper is four general agorithm forms:
random search, simultaneous perturbation stochastic
approximation, simulated annealing, and evolutionary
computation. We summarize the available theoretical results
on rates of convergence for the four algorithm forms and then
use the theoretical results to draw some preliminary
conclusions on the relative efficiency. Our aim is to sort out
some of the competing claims of efficiency and to suggest a
structure for comparison that is more general and transferable
than the usual problem-specific numerical studies. Work
remains to be done to generalize and extend the results to
problems and algorithms of the type frequently seen in
practice.

KEYWORDS:. Rate of convergence; random search;
simultaneous perturbation stochastic approximation;
simulated annealing; evolutionary computation.

1. INTRODUCTION

To address the shortcomings of classical deterministic
algorithms, anumber of powerful optimization a gorithms with
embedded randomness have been developed. The
population-based methods of evolutionary computation are
only one class among many of these available stochastic
optimization algorithms. Hence, a user facing a challenging
optimization problem for which a stochastic optimization
method is appropriate meets the daunting task of determining
which algorithm is appropriate for a given problem. This
choice is made more difficult by the large amount of “hype”
and dubious claims that are associated with some popul ar

algorithms. An inappropriate approach may lead to a large
waste of resources, both from the view of wasted efforts in
implementation and from the view of the resulting suboptimal
solution to the optimization problem of interest.

Hence, there is a need for objective analysis of the relative
merits and shortcomings of leading approaches to stochastic
optimization. This need has certainly been recognized by
others, asillustrated in the recent 1998 | EEE International
Conference on Evolutionary Computation, where one of the
major subject divisions in the conference was devoted to
comparing algorithms. Nevertheless, virtually al comparisons
have been numerical tests on specific problems. Although
sometimes enlightening, such comparisons are severely
limited in the general insight they provide. On the other end
of the spectrum are the “No Free Lunch Theorems” (Wolpert
and McReady, 1997), which simultaneously considers all
possible loss functions and thereby draw conclusions that
have limited practical utility since one always has at least
some knowledge of the nature of the loss function being
minimized.

Our am in this paper is to lay a framework for a
theoretical comparison of efficiency applicable to a broad
class of practical problems where some (incomplete)
knowledge is available about the nature of the loss function.
We will consider four basic algorithm forms—random search,
simultaneous perturbation stochastic approximation (SPSA),
simulated annealing, and evolutionary computation via
genetic agorithms—in the context of continuous variable
optimization. The basic optimization problem corresponds to
finding an optimal pointq’:

q =argmin L(q),
dD

" A more complete version of this manuscript is available upon request (james.spall @jhuapl .edu). Thiswork was partially
supported by the JIHU/APL IRAD Program and U.S. Navy contract NO0024-98-D-8124.



where L(q) is the loss function to be minimized, D is the
domain over which the search will occur, and q is a p-
dimensional (say) vector of parameters. We are mainly
interested in the typical case where ¢ is a unique global
minimum.

Although many stochastic optimization algorithms other
than the four above exist, we are restricting ourselves to the
four general forms in order to be able to make tangible
progress (note that there are various specific implementations
of each of these general agorithm forms). These four
algorithms are general-purpose optimizers with powerful
capabilities for serious multivariate optimization problems.
Further, they have in common the requirement that they only
need measurements of the objective function, not requiring
the gradient or Hessian of the loss function.

2. NO FREE LUNCH THEOREMSAND
THEIR RELATIONSHIP TO RATE OF
CONVERGENCE

Wolpert and Macready (1997) present a formal analysis of
search algorithms for optimization, the most popular of which
are evolutionary computation, simulated annealing (SAN) and
random search. This work results in several “No Free Lunch
Theorems,” stating, in essence, that no algorithm is
universally better than other algorithms. The full version of
this paper goes into some detail on the implications of these
theorems.

3. SSIMPLE GLOBAL RANDOM SEARCH

Wefirst establish arate of convergence result for the simplest
random search method where we repeatedly sample over the

domain of interest, Di RP. This can be done in recursive
form or in “batch” (non-recursive) form by simply laying
down anumber of pointsinD and taking as our estimate of q’
that value of q yielding the lowest L value. It is well known
that the random search algorithm above will converge in some
stochastic sense under modest conditions (e.g., Solis and
Wets, 1981; Spall, 2000b):

To evaluate the rate of convergence, let us specify a
“satisfactory region” S(q’) representing some neighborhood
of q" providing acceptable accuracy in our solution (e.g., S(q)
might represent a hypercube about g~ with the length of each
side representing a tolerable error in each coordinate of Q).
An expression related to the rate of convergence of Algorithm
A isthen given by

P(Qk T S@))=1- [1- P@ea(K) T SE@)I 31)

We will use this expression in Section 7 to derive a
convenient formula for comparison of efficiency with other
algorithms.

4. SIMULTANEOUSPERTURBATION
STOCHASTIC APPROXIMATION

The next agorithm we consider is SPSA. This algorithm is
designed for continuous variable optimization problems.
Unlike the other algorithms here, SPSA is fundamentally
oriented to the case of noisy function measurements and most
of the theory is in that framework. This will make for a
difficult comparison with the other algorithms, but Section 7
will attempt a comparison nonetheless. The SPSA agorithm
works by iterating from an initial guess of the optimal g, where
the iteration process depends on a highly efficient
"simultaneous perturbation" approximation to the gradient

g(g) ° L(9)/Tq .

The SPSA procedureisin the general recursive SA form:
Ok+1=0k - 8 Ik (k) (CEY

where (i (Qi) is the SP estimate of the gradient g(q) °

g at the iterate O (Spall, 1992) based on the

measurements of the loss function and a, > 0 is a “gain”
sequence. This iterate can be shown to converge under
reasonable conditions (e.g., Spdl, 1992; Dippon and Renz,
1997). The essential basis for efficiency of SPSA in
multivariate problems is due to the gradient approximation,
which uses only two measurements of the loss function to
estimate the p-dimensional gradient vector for any p. This
contrasts with the standard finite difference method of
gradient approximation, which requires 2p measurements.

Most relevant to the comparative analysis goals of this
paper is the asymptotic distribution of the iterate. This was
derived in Spall (1992), with further developments in Chin
(1997), Dippon and Renz (1997), and Spdl (2000q).
Essentially, it is known that under appropriate conditions,

kb/z(ak' q) A A NmS) ask? ¥, (42

where b > 0 depends on the choice of gain sequences (a, and
¢x), mdepends on both the Hessian and the third derivatives
of L(g) atq" (notethat in general, m* 0in contrast to many

well-known asymptotic normality results in estimation), and S
depends on the Hessian matrix at g and the variance of the
noise in the loss measurements. Unfortunately, (4.2) is not
directly usable in our comparative studies here since the other
three algorithms being considered here appear to have



convergence rate results only for the case of noise-free loss
measurements. Recent results by Gerencser (1999) and
Gerencsér and V&g6 (2000) on noise-free SPSA may ultimately
be useful.

5. SIMULATED ANNEALING
ALGORITHMS

The simulated annealing (SAN) method (Metropolis et a.,
1953; Kirkpatrick et a., 1983) was originaly developed for
optimization over finite sets. The Metropolis method
produces a sequence that converges in probability to the set
of global minima of the loss function as T, , the temperature,
converges to zero. Geman and Hwang (1986) present a SAN
algorithm for continuous parameter optimization. Their
agorithm produces a continuous-time stochastic process—a
diffusion process—whose probability distributions converge
weakly to the uniform probability distribution concentrated
on the (global) minima of the loss function, as the temperature
decreases to zero.

More recently, Gelfand and Mitter (1993) obtained
discrete-time recursions for Metropolis-type SAN algorithms
that, in the limit, optimize continuous parameter loss

functions: Suppose that {qy} is a Metropolis SAN

sequence for optimizing L and assume that the gradient g of L
exists (it does not have to be actually computed).

Furthermore, like SPSA, SAN has an asymptotic
normality result (but unlike SPSA, this result applies in the
noise-free case). Let H(?) denote the Hessian of L(?)
evaluated at ?”" and let I, denotethep ”~ p identity matrix. Yin
(1999) showed that for by, = (b/(k90g (k*9 + By) ),

[log (k*9 + Bo)]ﬂz((;]k - 2 2 N(O, S)indistribution,
where SH + H'S + (b/a)l =0.
6. EVOLUTIONARY COMPUTATION

There are three genera approaches in evolutionary
computation, namely Evolutionary Programming (EP),
Evolutionary Strategies (ES) and Genetic Algorithms (GA).
All three approaches work with a population of candidate
solutions and randomly alter the solutions over a sequence of
generations according to evolutionary operations of
competitive  selection, mutation  and  sometimes

recombination (reproduction). The fitness of each population
€lement to survive into the next generation is determined by a
selection scheme based on evaluating the loss function for
each element of the population. The selection schemeis such
that the most favorable elements of the population tend to
survive into the next generation while the unfavorable
elementstend to perish.

The principle differences in the three approaches are the
selection of evolutionary operators used to perform the
search and the computer representation of the candidate
solutions. EP uses selection and mutation only to generate
new solutions. While both ES and GA use selection,
recombination and mutation, recombination is used more
extensively in GA. A GA traditionally performs evolutionary
operations using binary encoding of the solution space, while
EP and ES perform the operations using real-coded solutions.
The GA aso has a real-coded form and there is some
indication that the real-coded GA may be more efficient and
provide greater precision than the binary-coded GA. The
distinction among the three approaches has begun to blur as
new hybrid versions of EC algorithms have arisen.

Global convergence results can be given for a broad
class of problems, but the same can not be said for
convergencerates. The most practically useful convergence
rates for EC algorithms seem to be for the class of strongly
convex fitness functions. The following result due to
Rudolph (1997b) is an extension of a more general result by
Rappl (1989). The theorem will be the starting place for the
specific convergence rate result that will be used for
comparison in Section 7. A more complete discussion of the
relevant EC theory isin the full version of the paper.

An EC agorithm has a geometric rate of convergence if
and only if E[ L, - L(q")] = O(c*) wherec T (0, 1) is called the

convergence rate. Under conditions, the convergence rate
result for a (1, 1)-ES using selection and mutation only on a
strongly convex fitness function is geometric with a rate of
convergence

c=(1- MF ;/Q)where M| = E[B;,]>0

and where B;; denotes the maximum of | independent
identically distributed Beta random variables. The
computation of M, , is apparently very complicated since it
depends on both the number of offspring | and the problem
dimension p. An asymptotic approximation for the
convergence rate for the (N, | )-ES where offspring are only
obtained by mutation isc £ [1—(2p log(l /N))/Q7.



7. COMPARATIVE ANALYSIS

7.1 Problem Satement and Summary of Efficiency
Theory for the Four Algorithms

This section uses the specific algorithm results in Sections 3
to 6 above in drawing conclusions on the relative
performance of the four algorithms. There are obviously
many ways one can express the rate of convergence, but it is
expected that, to the extent they are based on the theory
outlined above, the various ways will lead to broadly similar
conclusions. We will address the rate of convergence by
focusing on the question:

With some high probability 1- r (r a small number), how
many L(3 function evaluations, say n, are needed to achieve
a solution lying in some “ satisfactory set” §q') containing
q?

For each of the four algorithms, we will outline below an
analytical expression useful in addressing the question. After
we have discussed the analytical expressions, we present a
comparative analysis in a simple problem setting for varying
p.

Random Search

We can use (3.1) to answer the question above. Setting the
left-hand side of (3.2) to 1 - r and supposing that there is a
constant sampling probability P = P(0hen(K) T S(@)) " k, we
have

logr
n=_199

- m . (7.1)

Simultaneous Perturbation Stochastic Approximation

From the fact that SPSA uses two L(q) evaluations per
iteration, the value n to achieve the desired probability for

N

gk1 S(@) isthen
.3
_ 2(a;éd(p)s g

n .
e ds g

Simulated Annealing

The value n to achieve the desired probability for q, T S(?")
is

2
) d(p)s ¢
Iognl 9= éae’Z_(p) 9
e Us g
Evolutionary Strategy
The full version of the paper employs Markov's
inequality and the bound in Rudolph (1997b) to show that for

each generation k, there are | evaluations of the fitness
function so that n = | k, where

logr - log(1/e)
loggt- —25log(1 /N)
& pQ°

k =

o\

7.2 Application of Convergence Rate Expressions
for Varying p

We now apply the results above to demonstrate relative
efficiency for varying p. Let D = [0, 1° (the p-dimensional
hypercube with minimum and maximum q values of 0 and 1 for
each component). We want to guarantee with probability 0.90
that each element of q is within 0.04 units of the optimal. Let
the (unknown) true q, g, lie in (0.04, 0.96)°. The individual

components of  are qi* . Hence,
S(?°) =[?,- 0.04,?,+0.04]" [?,- 0.04,?,+0.04]
.. [?,-0.04,7,+0.04]1 D.

Table 7.1 is a summary of relative efficiency for the setting
abovefor p = 2, 5, and 10; the efficiency was normalized so
that all algorithms performed equally at p = 1, as described
below. The numbersin Table 7.1 are the ratios of the number
of loss measurements for the given algorithm over the number
for the best algorithm at the specified p; the highlighted
values 1.0 indicate the best algorithm for each of the values of
p. To establish a fair basis for comparison, we fixed the
various parameters in the expressions above (e.g., s in SPSA
and SAN, r for the ES, etc.) so that the algorithms produced
identical efficiency resultsfor p=1.



Table7.1. Ratios of loss measurements needed relativeto
best algorithm at each p for 1£ p£ 10

p=1 [p=2 | p=5 p=10
Rand. Search 116 | 8970 |20 10°
SPSA 15
SAN 2.2 41
ES 19 |19 2.8

Table 7.1 illustrates the explosive growth in the relative (and
absolute) number of loss evaluations needed as p increases
for the random search algorithm. The other algorithms
perform more comparably, but there are still some non-
negligible differences. For example, atp =5, SAN will take 2.2
times more loss measurements than SPSA to achieve the

objective of having g, inside S(g*) with probability 0.90. Of

course, as p increases, al algorithms take more
measurements; the table only shows relative numbers of
function evaluations (considered more reliable than absolute
numbers).

This large improvement of SPSA and SAN relative to
random search may partly result from the more restrictive
regularity conditions of SPSA and SAN (i.e, for formal
convergence, SPSA assumes a unimodal, several-times-
differentiable loss function) and partly from the fact that
SPSA and SAN work with implicit gradient information via
gradient approximations. The performance for ES is quite
good. The restriction to strongly convex fitness functions,
however, gives the ES in this setting a strong structure not
available to the other algorithms. It remains unclear what
practical theoretical conclusions can be drawn on a broader
class of problems.
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Abstract

We discusghe following measurableharacteristic®f intelligentbe-
havior in computingsystems:(1) speedand scopeof adaptibility to
unforeseersituations,including recognition, assessmenfroposals,
selectionandexecution;(2) rateof effective learningof obserations,
behaior patternsfacts,tools,methodsgetc.,whichrequiresdentifica-
tion, encapsulatiorandrecall; (3) accuratanodelingandpredictionof
the relevant external ervironment,which includesthe ability to make
more effective abstractions(4) speedandclarity of problemidentifi-
cationandformulation;(5) effective associatiorandevaluationof dis-
parateinformation; (6) identificationof moreimportantassumptions
and prerequisites(7) useof symboliclanguagejncluding the range
anduseof analogiesandmetaphorgthisis aboutidentificationof sim-
ilarities), andthe inventionof symboliclanguagewhich includescre-
ating effective notations.We male no claim thattheseareall theim-
portantcharacteristicsgiscovering othersis the point of our research
program.

Key Phrases: Intelligent AutonomousSystemsMeasuringIntelli-
gentBehavioy ConstructedComplex SystemsReflectivdnfrastructue

1. Introduction

Thispapemill describesomecharacteristicsf intelligentcom-
puting systemsgdescribehow to make measurementsf those
characteristicsand discusswhat they might mean,thoughwe
know thatthey do not cover the full spectrumof whatis com-
monly consideredo be intelligent behaior. We extractthese
mesaurementom several differentviewpointsaboutwhat is
importantfor intelligentbehavior, andexplain theirmostpopu-
larly expectedmplications.

Intelligenceis difficult to measurepecausét is thought
to be anintrinsic propertyof systems|ike a potentialcapabil-
ity or competencewhereasthe only things that can be mea-
suredare actual performancesundervarious kinds of condi-
tions. This problemhasplaguedthe evaluatorsof humanin-
telligencesincethe beginning,to the pointthatthey have gener
ally concentratedn measuringsomepostulateccorresponding

performanceharacteristic§g].

Therefore,metricscanonly be basedon obsened system
behavior (thoughthe obsenationscan, of course,measuren-
ternalprocessefrom aninternalperspectie, sincewe canhave
somekinds of internalaccess)sincewe have no directaccess
to how internal organizationand structureaffect intelligence.
Evenif we assuméhatintelligenceis entirelyintrinsic, we can-
notevaluateit separatelyrom its correspondindpehavior (even
if the behavior is only obserableintrospectvely). Measuring
performanceo infer competencegvenof externallyobsenable
behaior, is alsoverydifficult andtime-consumingsincewe in-
tendto usethemeasurementsverarangeof situationdan order
to evaluatetheintelligenceof differentsystems.

Successn a particulartaskis not by itself the right crite-
rion (evenif successverewell-defined). Many intelligent de-
cisionsfounderon therocksof poorinformationand/ or unex-
pectedevents,andbruteforcecanmake up for alack of intelli-
gence(e.g.,DeepBlue’s defeatof Kaspare reliedon very fast
special-purposhardware).

Computer programsthat play combinatorial gamesor
searchthe web are not very interestingto us from an intelli-
gent systemspoint of view, becauseheir domainis so lim-
ited and their goalsare provided from the outside. Even so,
we're interestedn computermprogramsascreatie entities(co-
investigatorsso to speak,insteadof just tools), and we think
thata careful study of whatwe canmake programsdo will be
helpful in understandingvhat the issuesare[2] [4]. In order
to studythesepossibilities,we wantto definea setof measure-
mentsthatcanbe usedto differentiateandunderstandherela-
tionshipsamongdifferentkinds of behavioral characteristics.

We considerautonomyto be morethanchoosingmethods
to satisfygoals. A systemis autonomougo the extentthat it
also choosesthosegoals. In fact, there are really only two
classeof (difficult) requirementdor effective autonomy:ro-
bustnessaandtimeliness. Rolustnesameansgracefuldegrada-
tion in increasinglyhostile environments,which to usimplies
a requiremenfor adaptability andtimelinessmeansthat situ-
ationsarerecognized'well enough”and “soon enough”,and
that“good enough”actionsaretaken“soonenough”. Thereis



almostnever ary optimizationhere (that almostalways takes
too muchtime andrequirestoo muchinformation).

For the purpose®f this paperwe concentraten the mea-
suremenprobleminsteadof the constructionproblem,though
we have somedefiniteideasabouthow to build theseinterest-
ing programs,basedon our Wrappinginfrastructurefor Con-
structedComplex Systemg17] [21] [22].

2. System Behaviors

We'll startwith the assumptiorthata computingsystemis de-

signedto helpits users_.do_ something9]. Thatsomethings

a problemin somesubjectarea,suchas, for example,copy a

file in acomputersystemproducea documenin alegal office,

kill monstersandcollecttreasure$n acomputergame retrieve

awebpagefor auser solve anequationn amathematicasub-
jectareafind patternsn noisydatain a scientificfield, coordi-

natea distributed simulationfor a military application,launch
a spacecrafin the aerospacéusinesscollaborateremotelyon

adesignproblemfor spacesystemsetc.. We'll usethesecases
asillustrationsin therestof thediscussion.

In all of thesecasesthereis anapplicationdomain which
providesa certaincontext of useand correspondingerminol-
ogy. Actually, thisis moreof adomain-specifitanguage, since
it includesmore thanjust vocalulary terms. It alsohasa set
of abbreviations and corventionsaboutwhat can remainim-
plicit, anda setof simplifications(which arefruitful lies about
theentitiesandbehaiorsin thedomain).It is importantto note
thatthesdanguagesnightor mightnotbewrittensymbolically,
since,for example,a computergameis often commandedis-
ing ajoystick insteadof typedcommandsandsomeimmersie
Virtual Environmentsare commandedy usermovementand
gesture.

Whattheuserwantsto dois calledtheproblem whichonly
malkessensavithin thecontext of interpretatiorprovidedby the
domain-specifitanguagef theapplicationdomain.Thesdan-
guagesreusedto definethe problemcontext or problemspace
whichis aspecializedcontext within theapplicationdomain,in
which it makessenseo statea problem.

In otherwords, it is our opinionthata problemcannotbe
evenstatedproperlyor sensiblywithout an agreedupon(more
often, merely assumedppplicationdomainand problemcon-
text. Very often, it is mistakesin the commonunderstandingf
this problemcontext thatleadsto unexpectedlybizarreor con-
strictingbehaviors on the partof the computingsystem.

Sonow we have awell-specifiedoroblemdefinedn aprob-
lem context. We arepurposelysettingasidecreatvity for now,
thoughwe believe that this frameawork canalsobe appliedin
that case,with a problemstatementf finding the appropriate
well-definedproblem(this approachs partof our ProblemPos-

ing paradignm20]). Explicitly identifyingtheproblem,andsep-
aratingit from thepossiblesolutionsor requireduseractions,is

animportantaspectof our approach.It allows mary different
possiblesolutionmethodgo beconsideredSinceNO oneanal-
ysisor problem-solvingmethodcandealwith all problemsin a

comple« domain[6] [1], it is importantto have mary methods
available.

Theseform theresouce space which containghe compu-
tationalandinformationresourcesghatareavailableto address
the problem. It is usuallyimplementedas a large set of in-
dependentnethods but we think that more structureherecan
help (whichis why we call it aspace).

A certainconfigurationof thoseresourcess neededo ad-
dressthe particularproblemthat the userhasspecified. This
collectionis usuallymuchsmallerthanthetotal resourcespace,
sowe call it the solutionspace Sinceit containsonly those
resourcesequiredto solve the problem,we would ideally like
to have the computingsystemfind this spacequickly.

However, in orderto find a solution space,very often a
much larger examination spaceor discovery space must be
searched.

For example,in trying to prove a theorem(in geometry
say), the problemspaceis onein which the assertioncan be
made the solutionspaceés onein whichthe proof canbe made,
andwhich ofteninvolvesextra elementgonstructedustfor the
proof. The resourcespaceis the collection of lemmas,theo-
rems,inferencerules,problem-solvingnethodsandpreviously
solved problemsandthe solutionsearchspaceis muchwider,
sinceit hasto includemary differentkinds of constructiorand
proof discovery methods.

3. Characteristics

In this section,we discusghe following measurableharacter
istics of intelligent systemg(it canbe seenthatthereare non-
trivial overlapsamongthem,which we try to unravel lateron):

. adaptibility,
. learning,

. predictve modeling,

1

2

3

4. problemidentification,
5. informationassociation,
6. assumptionsand

7

. symboliclanguage.

In eachcase we offer anapproacho at leastoneway to com-
puteameasurementaluefor the characteristicwhich we hope
will stimulateothersto inventandprovide betterones.



We malke noclaimthattheseareall theimportantcharacter
istics; discoveringothersis the point of our researckprogram.

3.1. Adaptibility

By far the mostcommonlyexpressedattribute of intelligence
is adaptibility, which for us meansthe speedand scopeof
adaptibility to unforeseersituations,including recognition(of
theunforeseersituation),assessmenproposalgfor reactingto
it), selection(of an actvity), and execution. Accuratepredic-
tion of effectsis evenbetter(andmoresuccessful)but we save
thatonefor alatersection.

A commonexampleof adaptibility is flexible planning,in
which a systemcanreactquickly to situationsby changingits
plans. It seemslearthatflexibility in plansis partly the result
of theirincompletenessf the detailedgoalsremainpartly un-
specified thentherearemorepossiblestepsto take. This phe-
nomenorshonvsupin programmingas‘late binding”, in which
aresourceusedto address problemis oftennot selecteduntil
just beforeit is used(asin our Wrappingapproachto hetero-
geneoussystemintegrationin ConstructedComplex Systems
[19]). Thedelayingof thesedecisionsdoes,of course conflict
with rapidexecution,andtheresultingtradeof is importantand
dependsssentiallyon rapid elaboratiorandevaluationsof the
choices.

To measureadaptabilityof a systemwe have to presenit
with differentkinds of variability in its ervironment,andmea-
sureits performancethenaveragethatperformancever some
variability measuremerdf the ervironment. The variability in
the ervironmentcanbe static (mary differentkinds of slowly
changingernvironment), dynamic, (rapidly changingphenom-
enawithin theervironment),andin bothcasesye candescribe
the degradationin performanceasa function of the variability
in theervironment.

3.2.Learning

Anothercommonattribute of intelligenceis learning, whichfor

usis therateof effective learningof obsenations ,behaior pat-

terns,facts,tools, methods.etc. [27]. Thereis an enormous
literatureon learningin humansand animals,but our interest
hereis mainly onthe measurement®r computingsystemghat

canlearn. Learningis aboutimproving performancesoin a

senseall of our proposedmeasurementsan be improved by

learning. Part of this learningincludesconceptformationand

formulation,which is a way to summarizedifferentstructures
andprocessesompactly We returnto this pointlateron, in the

sectionon symbolsystems.

It is importantto note herethattherearesomefundamen-
tal limitations on the kinds of symbolsystemghatcanbe used

in the expressie tasksabove. One of the limitations of ary
discretesymbol systemis the “get stuck” theoremq18] [23],
which shaw thatunlessa systemcanchangéts own basicsym-
bols, and re-expressits knowledgeand behaior in new sym-
bols, new knowledgegraduallybecomesharderand harderto
incorporateeadingto a kind of stagnation.

Measuringearningis alittle easietthanmeasuringadapt-
ability. We have long madea distinctionbetweena smartsys-
tem, which hasa lot of knowledgeaboutits domainof appli-
cability, andanintelligentsystemwhich canlearnnewx knowl-
edgequickly aboutits domainof applicability Smartnesss
a performancecharacteristi¢hatis relatively easyto measure,
andthe ability to learn,which is aboutimproving that perfor
mancejs easybut time-consumindo measure.

3.3. PredictiveModeling

An importantway to be lesssurprisedat ervironmentalphe-
nomenais predictive modeling which for us meansaccurate
modelingand predictionof the relevant externalervironment.
This kind of modelingincludesthe ability to make more ef-
fective abstractiongwhich is treatedbelow in a later section).
Sincea systemcannotknow everythingaboutits ernvironment,
we assumehattherewill bemultiple modelscarriedin parallel,
with new datainterpretednto informationusingthe modelas
aninterpretive context, andeachmodeladjusted assesse@nd
rankedfor likelihoodcontinually Thiskind of modelingmakes
the computingsysteman anticipatory systemin the senseof
Rosen[33], sinceit canmale currentdecisionson the basisof
its modelsof future effectsof its decisions.lIt is thereforeex-
pectedto be muchmorecapableghanamerelyreactive system,
sinceit canbe preparingresponseso its ervironmentbefore
anythingimportanthappensn the ernvironment.

A concreteexampleof this kind of modelingis trying to
distinguishtrendsfrom fluctuationsat differenttime scalesn a
comple« ervironment. In suchanervironment,actiity occurs
atmary time scalessotheonly viableapproachs multiresolu-
tional[31] [32], thatis, the systemmustmaintainseveraldiffer-
entfiltering processethatexaminethe ervironmentat different
resolutiongtime, spaceandevenconceptual)andlook for lo-
cal stationarity

Therearethreekindsof modelsto beconsideredempirical
models,which arecomputedaccordingto the obseneddata,a
priori models,which are provided up front, and fitted to the
data(we think theseare muchlessimportantthanthe others),
anddeducednodels which arederivedfrom othermodelsand
knowledgeavailable.

In addition,analyseof thesemodelsrequiresseveral dif-
ferentkindsof reasoningbothmathematicahndlinguistic[16].
Thesemethodsncludecase-basedeasoningin whichthesys-
temtriesto matchthe currentsituationwith oneit hasencoun-



teredbefore,deductivereasoning which canbe illustratedas
having statementSA” and“A impliesB” andconcludingstate-
ment“B”, andinductivereasoningwhich canbeillustratedas
having statementsA” and “B” and concludingstatement'A

implies B”. The best-knavn exampleof inductive reasonings

exploratory patternanalysis whichis away of extractingprop-
ertiesof mostly unknovn data. The last style of reasonings

abductivereasoning which canbe illustratedas having state-
ments“B” and“A implies B” and concludingstatement'A”.

This style of reasonings the onecorrespondingo explanation,
sinceit follows the deductve chainsbackwards.

Measuringthe modelingcapabilityis notaboutcomparing
theresultingmodelswith the processeanderlyingtheerviron-
mentalphenomendayut rather it is aboutmeasuringhecorrect-
nessor appropriatenesef the predictions. Somepredictions
take the form “this phenomenoris unimportant”,while some
mustbe muchmoredefinite, suchas“the moving ball will be
thereatthattime” or “the closingdoorwill be openenoughfor
a few seconds”.Onceexplicitly formulated,thesepredictions
canbecomparedandtheresultsplottedagainsthe compleity
of the predictiontask(which we asevaluatorsmustassess).

3.4. Problemldentification

Thebestwayto respondo problemgyuickly is to identify them
quickly, which requiresspeedandclarity of problemidentifica-
tion andformulation.In ouropinion,speedf problemsolution
is secondary Evenif we seemto specifya problemasa con-
strainedsearchyve seemnto construcsearctspaceshatarevery
problem-specificpften extremely intricate, constructedusing
the constraintdirectly (i.e., not by searchinga large encom-
passingspaceandignoringthe partsoutsidethe constraints).

This problemidentification problemis a specialcaseof
the situationidentificationproblem,in which acceptableper
formanceis often dependenbn recognizingthat a situationis
similarto oneencounterethefore,andthat,in turn,depend®n
identifying the “right” setof featuresof the situationto explic-
itly noticeandrecall.

Naive modelsof situatedcomputingsystemsassumethat
all of the importantdatathat definesa situationis contained
in the sensowaluesfor thatinstant. Humansdon't do that; we
seemo extractinformationfrom thedata,basecbnanumberof
continual,particular andonly occasionallygoal-directednod-
els,andretainonly a smallpartof theactualsensodata.There
is alsosomereasono believe thatwe only keepinterval aver-
ages,not instantaneougpictures,of a situation(even a mental
imageis the resultof alot of processingfor objectseparation
andidentification,etc.).

The ability to identify importantsituationfeaturesquickly
andcorrectlydependn having at handtheright specification
spacedo determineanddescribehefeatures.

Very often, the applicationdomain and problem context
that allow a problemor even a situationto make sensemust
be inferredfrom the obsenable ervironmentalbehaior. This
processs also part of good problemidentification,a kind of
recognitionor noticing.

Good problemidentificationis an intermediatestagebe-
tweengoalsandsolutions,soit mustin partdependon there-
sourcesvailableto a system.

Criteriafor goodproblemidentificationarestill difficult to
describe We will take speecdbf problemformulation,succinct-
nessof problemstatementandaccurag of problemstatement
to be the main criteria. Here,we canonly assesshe accurag
of the problemstatementisingknowledgeof thepotentialsolu-
tion methods sincethe effectivenessf the problemstatement
depend®nwhichresourceganaddresst.

3.5. Association

Oneof the clearestsignsof intelligenceis the wide scopeand
effectivenesf associationsandthe correspondingvaluation
of disparatanformationfor inclusioninto a decisionprocess.
Discovery and explanation of new associationss even fre-

quentlyassociatedvith creatvity.

This includes several different kinds of reasoning,from
analogieanduseof metaphorsthroughtheconnectiorof facts
to inferencerules. It includeswaysto usecomplex relation-
shipssummarizedhumerically(aswe sooftendo whenwe im-
plementthesesystems)andit mustincludeavery flexible rea-
soningsystem[16]. Thereis someargumentto the effect that
all of thesecanbe viewed assimilaritiesin conceptuakpaces
[10], aslong aswe make the classof spacesarge enough(i.e.,
notjust numericalones).

Theseabstractassociationsare also part of the mysteri-
ousphenomenowf “noticing”, which canoccurwhenrepeated
or anomalougrnvironmentaleffectsare pushednto awareness,
seeminglywithoutary prior attention.Similarly, we seemnto be
adeptat noticing correlationsn temporalsequencegthis abil-
ity clearly hassomeevolutionaryadwantages)evenwhenthey
occurin distinctsensoryor conceptuaspaces.

Thesimplestversionof theseprocessesisesempiricalsta-
tistical techniquessuchasthe useof co-occurrenceneasure-
mentsin naturallanguagenformationretrieval. Theseandre-
latedmethodswork surprisinglywell for this cas€[26], andwe
have shavn that they canbe usedin otherareasaswell [12]
[24].

Ontheotherhand,whatallows thesemethodgo work well
is theexplicit representation®r wordsandphrasesn thekinds
of documentaused. In our caseof ConstructedComplex Sys-
tems,the systemhasto make the representationexplicit first,
after which the analysesare relatively easy In particular it



is importantto have a representationahechanisnthat allows
comparisongn mary differentconceptuaspacessothatdiffer-
entkinds of associationsanbe computedandanalyzed.

Sincewe discussdn othersectionghe choicesof represen-
tation and the difficulties of appropriateones,we considerin
this sectiononly the problemof computingassociations.We
could positthatthe wider the associationsange,i.e., the more
conceptuakpacesareinvolved, the betterthe associatiorpro-
cess,but that width of scopehasto be tradedoff againstthe
speedof use of the associationssince we are actually only
ableto measurgerformancenotcompetenceThis ability will
manifestitself asan improved ability to recognizesimilarities
in difficult problems,and an improved ability to useunlikely
resources$o addresproblemsin ausefulway.

3.6. Assumptions

A perennialproblemwith reasoningn systemsand particu-
larly with deduction,is the mis-identificationand conflation
of assumptions.It is importantthat a systemcanidentify its

moreimportantassumptiongnd prerequisiteswhich includes
theability to widenacontext (by removing someof theassump-
tions).

This problemis a specialcaseof ComputationalReflec-
tion [28] [11], which is the ability of a ConstructedComplex
Systemto analyzeits own behaior [15]. Having accesgo in-
ternaldatastructuresandreasoningprocesses anexplicit and
analyzableway allows a systemto monitor its own behaior,
short-circuitunsuitabldines of reasoningand perform“what-
if” studiesof itself, which caneliminatesomeerrorsbeforethey
occur[21] [24]. We have shavn thatit is relatively straight-
forwardto implementsystemswith this kind of Computational
Reflection[17], but the generalcaseis muchharder

We canconsidersystemghatidentify the prerequisiteof
anaction,sinceidentificationof prerequisitess abductve rea-
soning(alsocalled“backward chaining”in the Artificial Intel-
ligenceliterature),but designinga systemthatcandeterminea
contet limitation, which is a kind of prerequisiteof represen-
tation,andthenmove outsidethatlimitation, is muchharder

Identifyingassumptionss akind of creativereasoningthat
examinegreasone@drgumentsandtransformtheminto aniden-
tification of theassumptionandinferencerulesrequiredto ac-
complishthearguments Sincewe expectthesystento perform
theseoperationstself, it musthave a mechanisnior reasoning
within a system,aboutthe boundariesand limitations of that
system.We think thatthis ability is bothhardandessentiafor
intelligentsystems.

We canmeasurenow well a systemidentifiesits own as-
sumptionsby placingit into ernvironmentswheremary com-
mon assumptiongail, and checkinghow well the systemper

forms. We can also useernvironmentsin which the basicas-
sumptionschangewith time, to seeif the systemcanreactsuf-
ficiently quickly. Thesemeasurementare subtle, and disen-
tanglingthemfrom the otherpossiblereasongor performance
failureswill be difficult. We needmuch bettermeasurements
here.

3.7.Symbolid_anguage

Perhapghe mostimportantpropertyof all, in our opinion, is
the use of symboliclanguagefor explicit representationsn-

cluding the rangeand useof analogiesand metaphorgthis is
aboutidentificationof similarities),and the inventionof sym-
bolic languagewhich includescreatingeffective notationsfor

internalrepresentationThis propertyis not altogethemunchal-
lenged but despitethe“behavior-based'intelligencework [29],

we believe representatioto be essentiaht all levels of intelli-

gencd3], especiallyfor computingsystems.

We repeatherethatwe don't careparticularlywhetherliv-
ing systemgandin particularhumanshave all of thesemodels
explicitly representedr implicitly embodied Our Constructed
Complex Systemawill have themall explicit.

This property should be unraveled into several different
characteristicyut theredoesnt seento beanappropriateanal-
ysisof it yet,thoughtherearesomepromisingor at leastinter-
estingapproache§34] [7], andwe have proposedan architec-
turethatemphasizethe symbolsystemg22].

Suchan approachto the use of symbolsin Constructed
Complex Systemanustaccountfor the semanticof represen-
tation[35], at mary differentlevels, andfor the processethat
changedhoserepresentatiomethodgour conceptuatateyories
areanexamplerepresentatiostyle[13] [14], andourcomputa-
tional semioticsresearchs aboutchangingthe symbolsystem
whenit becomesecessaryl8] [23]).

It turns out that human expertise often correlateswith
betterorganizecknowledge,andnotjustwith moreknowledge,
sothatproblemsarerecognizednorequickly [8].

Since, in our opinion, appropriateabstractionrequiresa
repertoireof conceptuaspacessothattheimportantproperties
of the situationat handcanbe matchedo mary morechoices
of analysisspace andevaluatve assessmentsanbecomepart
of the matchingprocessywe think that a very large repertoire
is neededtogetherwith somevery flexible andfastindexing
methods.

Following our own symbolsystemstudieshere[13] [14],
we measureheuseof symbolsystemyia anefficiency notion:
thetotal sizeof therepresentationgsedcomparedo the scope
of whatis representedThis comparisorcanbeestimatedising
theanalysidescribedn thepaper<ited: afixedsymbolsystem
hasa fixedfinite setof basicsymbols,anda fixed finite setof



symbolstructurecombinatiormethods Thesesetsstrictly limit
the numberof distinctionsthat can be representedvithin the
symbol systemwith eachsize expression. If the systemcan
alsochangethe combinatiormethodsthenthe numberscanbe
muchlarger (thoughthey arestill computable).

This measuremenis, of course,an intrinsic one (i.e., it
is a competencaneasure),not an extrinsic one (i.e., a per
formancemeasure) but we think that it will help us develop
more performancemeasurementsln addition, we want some
other performancemeasurementsuchasthe speedof repre-
sentationalkencoding,measuredn someunits independenbf
machine-hardare,andthe speedf interpretatiorof thoserep-
resentationgwhich is aboutdeterminingthe appropriateaction
to take). Therearemary otherpossiblemeasuresere.

4. Intelligent Systems

In this sectionwe discusshow theseissuesaffect the designof
ConstructedComplex Systemg15], which areartificially con-
structedsystemshat are managedr mediatedby computing
systems.We areconcernedvith issuesof autonomousndin-
telligentbehavior in suchsystemswhich for us, atleastmeans
thatthesystemakesamajorrolein selectingts own goals[17]
[25]. Whenwe expectConstructedComplex Systemdo operate
autonomouslywhetherout in the realworld or in cyberspace,
we needto incorporatea greatdealof flexibility andadaptabil-
ity into their designandimplementation.We have shovn one
way to implementsucha system[21] [22], onethatalsohelps
avoid the mostcommondifficultiesfoundin complex comput-
ing systemsrigidity andbrittleness.

Biological systemshave muchmoreflexible and powerful
adaptatiorpropertiegshan mostconstructedgsystemg5], anda
careful consideratiorof their propertiesprovides stringentre-
quirementdgfor the kind of ConstructedComplex Systemghat
would be ableto actautonomouslylt alsogivesus somehints
aboutthedesignstructureghatareneeded30] [17].

Our approachis to definea new kind of architecturg22]
thatincludesboth our Wrappingintegrationinfrastructurg19]
and our ProblemPosinginterpretation[20], that provides a
declaratve interpretatiorof all programmindanguagessothat
posedbroblemscanbeseparateffom applicableresourcesand
our conceptuatategories[13] [14] to provide a flexible repre-
sentationmechanisnthat separatesnodel structuresrom the
rolesthey play.

Our Wrappingarchitectureprovidesthe requiredflexibil-
ity by supportingsystemshat are variableasfar down aswe
chooseo make them(evenall theway down throughthe oper
atingsystento thehardware)[15]. Onereasorthatwewantthis
variability is thatwe expectto studymary differentapproaches
to ary givenproblemarea,andour infrastructurenasto support
alternatvesfor almostevery partof every processin fact,one

of theprincipleswe have highlightedin ourarchitecturénvesti-
gationsis thatNO onemodel,languagepr methodsufficesfor
acomplex system(or ervironment) sothevariability is notjust
corvenient;it is necessar{6] [1].

In addition, we take the hypothesizeccommonorigin of
languageandmovement]3] asa hint, sincethe implied layers
of symbol systemscan be implementedeasilyin Constructed
Complex Systemausinga meta-level architecturg17].

In additionto the dataandprocessesye alsoneeda third
style of computation that of “re-expression”,which allows a
systemto re-omganizeitself whenits currentorganizations not
adequateWhatthis meandor usis thatthe systemcansome-
how detectwhenits own representationahechanismsre not
adequateandit canusethefailuresto helpinventnew ones.

To make things even more interesting,we also want to
have the systemdecide for itself when it needsto be re-
organizedpecauséts fundamentasymbolsystemsarenot ex-
pressve or powerful enough,andthencarry out for itself the
re-olganizatiorautomaticallyby definingnew symbolsystems
andre-expressingtself in the new terms.This behaior is hard
toimplementusefully, but we have madesomeprogressn iden-
tifying theimportantissues.

The Wrappingprocessegive the processtructureandthe
Wrappingsand conceptualcateyories give the datastructure.
The re-expressioncriteria are implementedas resourceghat
monitorthe system.We describesachof thesetechnicalissues
in turn, andthenshov how they canbe usedto help construct
thekind of systemwe wantto build.

Theessencef computationis interpretatiorof symbolsys-
tems. The only operationghata digital computercanperform
arecopying andcomparison.All arithmeticin digital comput-
ersis via limited-precisionexplicit modelsof the correspond-
ing integer or real arithmetic. Therefore,we cannotconstruct
computingsystemgo do complex or otherwisenterestingasks
without mary explicit modelsof the kinds of computationde-
duction,or analysisrequired.All of thesemodelsmustthenbe
expressedn termsof the operationghatwe canimplementon
these(very) limited computers.

Thetheorem®f Turing, Go:del,andothersshav thatthere
are fundamentallimits on the expressie and computational
power of computingsystemsput ALL of thetheoremsassume
that the symbol systemremainsfixed (thatis a basicassump-
tion in all of the mathematicaproofs),andthatthe parallelism
canbemappednto interleavedevents.Systemghatarenot re-
strictedin eitherof thesewaysmightescapahe boundsof these
theorems.This is oneof our currentdirectionof researct18]
[22] [23].



5. Conclusions

We careaboutmeasuringntelligencebecausave wantto build
suchdevices,andwithout somebettermeasuremerntrocesses,
wewill have no repeatablevay to evaluateandcomparediffer-
entdesigns.

We have describedsomepropertiesthat we think areim-
portant,that have driven our researctin ConstructedComplex
Systemsincludingafew thathave notbeenextensiely usedor
identifiedin theliterature.We donotthink thatthey completely
coverthespectrunof whatis commonlyconsideredo beintel-
ligentbehavior, butthey do covermoreof thescopethansimply
“adaptability” or “intellect”.

We have examinedthesepropertieso determinevhatthey
requireasfundamentaknablingcapabilities,anddescribedan
architecturehatincludesall of theseenablersasaway to test
our assertionsboutthe connectionbetweenthem andintelli-
gentbehavior. We expectthataswe build systemawith moreof
theseenablersthe systemswill exhibit more of the important
propertieswe have identified, and at the sametime they will
seemmoreintelligent.

We think that this problemis hard, and that we are on
a right track (we make no assumptiorabouthow mary right
trackstheremaybe;the morewe collectively explore,themore
likely it is that we will get someof the right answers). We
think that fundamentainvestigationdik e theseare necessary;
we hopethatthey aresuficient.
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Generalizing Natural Language Representations
for Measuring the Intelligence of Systems

A. Meystel
Drexel University, Philadelphia, PA 19104

Enhanced abstract

In the core of this method of intelligence evaluation, there is a concept of using natural language as the le
damaging medium for representing knowledge of the systems. The goal of all existing methodologies of knowled
representation boils down to performing generalization of this knowledge in one of the existing forms: analytic
representation, automata theory, predicate calculus of the first order. Connectionist schemes are not on this list becaus
problem of generalization upon the entity-relational network (ERN) have not been addressed consistently. In this paper,
concept of constructing a nested multiresolutional system of ERNs by consecutive generalization of them bottom-up
consecutive instantiation of them top-down. It is demonstrated that given a set of problems to be resolved, one can learn v
one the nested ERN alternatives is more appropriate for solving this set. Finally, a problem of evaluating ERN “for any se
problems” is discussed.

Conceptual Paradigm.This theoretical paradigm relates to digital text processing equipment such as a compute
system used for text processing. The method and the apparatus is used to obtain a structure of text organization, elemelr
which can be used upon the initial narrative for the subsequent processing in order to generate a variety of diffelant texts
have different degree of compression. It is anticipated that by constructing a proper organization of the text representat
obtained from the original document, different structures of the text could be constructed, for example, the one that wot
allow to encode its meaning as a set of nested and interrelated generalizations. In turn, this should allow for generating
narrative text from each of these structure. These texts should be different in their level of generalization, focusrof attenti
and the depth of detail.

General Vision. As soon as the analysis starts, the whole texts changes its initial shape and demonstrates
multiplicity of potential interpretations at each level of resolution. The text subjected to the process of analysis desnonstra
its semantic fuzziness, and combinatorial clouds of combinatorial possibilities emerge around each unit of the texts. Th
"clouds” characterize the interpretational ambiguity which should be eliminated (or at least, substantially reduced} as a re:
of text processing. The fuzzy and not totally disambiguated units have frequently an emergent property of sticking togeth
forming new generalized units that precipitate from the fuzzy intermediate structure. Eventually a new text emerges which
shorter than the initial one. This "sticking together" happens in a strictly multi-granular fashion. Each text has atpotential
several rounds of compression by generalization as well as to several rounds of enhancement by instantiation. Constructic
such a multigranular structure can be performed for each text, or a group of texts.

This process of combinatorial fuzziness generation including the formation of the links of nestedness, ar
precipitation of the multigranular text structure (together with levels of enhancement and/or compression) can be dc

spontaneously during free, or goal driven interpretation of an unknown document. However, if the assignment contains



description of a specific customer's interests, this combinatorial fuzziness generation can be guided by this assignmen
does not necessarily need to be guided. In the latter case, a summary of the general (non-goal-oriented) form is created.

Multiresolutional Structure of Text Representation. Extracting the multiresolutional (multigranular, multiscale)
structure (nested hierarchical architecture) of text units (entities) from the Text is a prerequisite to transformati@n from t
narrative representation into the relational architecture of knowledge. The main dictionary is used for the initial ioterpretat
of the units of Text, and the new domain dictionaries are formed for the text-narrative, or Original Text (OT) togettser with if
Structure of Text Representation (STR) as a part of the text analysis. The multiresolutional hierarchy of STR consists of
units, which lump together elements of the text, that has emerged due to the "speech-legacy" grammar. Since
transformation of OT into STR can be done through incremental generalizations within OT, building the vocabulary of th
OT is a prerequisite for the subsequent STR construction.

The vocabulary is a list of "speech-legacy” words that are symbols for encoding entities of the real situations ai
can be represented by single words as well as groups of vimtity. is defined as a thing that has definite, individual
existence in reality or in the text; something "real" by itself. In other words, an entity of the reality is anything that exis
important for registering and memorizing, has a meaning as a part of some functional description and is (or should |
assigned a separate word (or a group of words) no matter whether we use it as a petioflégacy” representation, or an
element of the STR. The first problem to be resolved is finding entities that are represented by single words, then test gro
of interrelated words, as phrases that denote entities. Therefore, functioning of STR requires understanding how

Units of representation The decomposition of the uniform chaotic informational medium takes place driven by the
initial goal and a set of criteria that might determine different kinds of uniform media. Thus, the results of developing tr
linguistic world representation depends on the aspect of interest submitted and encoded by the user. As a result of recogn
processes, a variety of singular information units (entities) emerges, which fit within a natural categorization thaitlis implic
influenced by the observer. Formation of singularities (as entities) can be metaphorically described as a result of cluster
processes in which the elementary units of the primordial Text gravitate to each other in the areas of higher informatiol
density (where the elementary units are more in quantity, more interrelated, and more important for the user. For clarifyi
the gravitational metaphor, we should emphasize that for the further discussion it is irrelevant whether the density
increased as a result of the gravitation, or gravitation starts prevailing because of an initial increase in density. In ¢
disclosure, these processes are to be understood in computational terms. At this point, the observer will legitimately appes
our presentation as a carrier of the interrelated concepts: scale, resolution, and granulation.

The concept of scale allows for introduction of a formidable research tool that can be applied for each couple
adjacent levels of knowledge organization obtained by the method described in this Section of the disclosure. This tool
related to the specifics of a different interpretation of units in higher and lower levels of resolution (HLR and LLR)tsThe uni
of the HLR emerge as a result of the process of forming singularities at the previous, even higher resolution level (which
not a part of our couple levels of resolution under consideration). After these singularities have been formed, they receive
interpretation, a meaning, a separate word of a vocabulary at this HLR. For the LLR of the pair of levels that we discu
these particular singularities have no meaning at all.

The meaning will emerge after these entities of the higher level of resolution (HLR) will assemble together into

singularity which can be recognized by the user at the lower resolution level (LLR) as a meaningful entity. Before groupir



of these entities into meaningful singularities happens, they are just nameless units with a tendency to gravitate to each o
expressed in the set of their relations. This phenomenon is similar to physical gravitation although the gravitation “forci
depends on the text, context, goals, and other details of the situation. So, the process of entity formation for LLR recogni
the entities of a HLR just as a set of anonymous units. Their “gravitational” field leads to clustering of features aedacan giv
birth to a new entity of LLR.

Phenomena of Attention: Scope and FocusVindowing that has been demonstrated in Figure 3 is a result of the
need to focus our attention within a specific scope. Let us consider a particular zone of the medium that we use to evalu
we will call it the scope of interesfn imaginary large windowtlfe scope of attentiyns to be imposed upon the medium
(scope of interejtThen, the smaller window is sliding within the scope of interest to evaluate the information density. Thus
the size of the scope of attention is presumed to be substantially smaller than the scope of interests. Density of non-unif
units is to be computed within this window which allows evaluation of the continuum quantitatively. Then the window slide
over the whole scope of interest, and in each position the density is again computed.

The sliding strategy of moving the window of attention over an Image and/or Text is assigned in such a way that :
scope of interest can or will be investigated efficiently. This strategy can be different for constructing different models: w
can scan it in a parallel manner; we can provide a very unusual law of scanning; we can make random sampling fr
different zones of the scope of interest. The strategy selection should depend on needs, hardware tools, and resot
available (for example, time). If values of density are about the same everywhere (with small variations within sorr
particular interval) then the medium is considered to be uniform.

Notice, a) that in order to introduce the concept of uniformity we used a sliding window which is one of the
technigues ofocusing attentionp) that in order to form entities of a particular level of resolution we shgnadp the
entities of the higher level of resolution; c) that to find candidate units for grouping we skatdtifor future members of
these groups or otherwisembinethem together. Later we will return to these operations as components of the elementar
unit of intelligence.

The idea of meaning of representation closure (MRC-loop) is tantamount to two fundamental iseas: a) the cyberne
idea of feedback or circularity of control (information) circulating in the locally closed system to provide the abiligy for th
system to meaningfully function, and b) the physical idea of energy and matter conservation in the closed system.

The phenomenon of closure can be demonstrated required for explication of the meaning of representation whi
provides for complete informational connectedness for the flow of representation which starts and ends in the Virt
WORLD represented within a level of knowledge architecture. It is held at each level of granularity for the virtual Worlc
determined by the alternatives of meaning implied by the Text and the Goal of the user.

We have developed algorithms of bottom-up consecutive generalization of ERN that represent the text ar
algorithms of top-down instantiation. We have applied these algorithms to realistic text. The advantages as well
deficiencies of the original text demonstrate itself more graphically as the process of generalization develops. As$ a resul

becomes possible to judge the original text and even evaluate its advantages and disadvantages quantitatively.
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Abstract

We address the question of how to identify and
measure the degree of intelligence in systems.
We define the presence of intelligence as equiv-
alent to the presence of a control relation. We
contrast the distinct atomic semioic definitions
of models and controls, and discuss hierarchi-
cal and anticipatory control. We conclude with
a suggestion about moving towards quantitative
measures of the degree of such control in systems.

1 Introduction: A Control
Theory Framework for Intel-
ligence

We consider some of the challenges presented in
the white paper designed to prepare for this con-
ference [13]. I take the fundamental question to
be “How can we as external observers measure
the degree of intelligence in a target system?”
One approach is to invoke the typical lists
which can characterize intelligent behavior, in-
cluding adaptability, complexity of internal mod-
els, problem solving ability, etc. But what is
fundamental to each of these? For example,
adaptability is the ability to adjust responses
to make them appropriate under variable condi-
tions. Problem solving is the ability to come to

“Prepared for the 2000 Workshop on Performance
Metrics for Intelligent Systems.

a correct choice about actions to achieve a par-
ticular goal, hereby solving the problem. And
finally, complexity of internal models must al-
ways be considered as relative to their ability to
predict the outcome of future behaviors.

Thus can see that fundamental to all of these
is the idea that intelligence requires the ability
of a system to make appropriate decisions given
the current set of circumstances [1, 2, 3]. On
analyzing this a bit further, we can identify the
following necessary components:

Measurement: The ability to know the current
set of circumstances.

Decision: The freedom to choose between one
of many posibilities.

Goal: The possibility that the choice made will
be either appropriate or inappropriate rela-
tive to a goal state.

Action: The ability for the decision to affect ex-
ternal and future events, in order for them
to be either closer to or further away from
the goal.

2 Intelligence as Semiotic Con-
trol

We note the similarity to the scheme of an intel-
ligent system as outlined in the conference White



Paper [13]. This requires a “loop of closure” con-
sisting of six modules: a world interface, sensors,
perception, a world model, behavior generation,
and actuation. We understand this situation as
the existence of a semiotic control system. We
know briefly outline the theory of semiotic sys-
tems.

2.1

There is a rich literature (eg. [5, 15, 17, 18, 19]),
traceable back to the founders of systems theory
and cybernetics in the post-war period [4], which
has tried to construct a coherent philosophy of
science based on two fundamental concepts:

Semiotic Models and Controls

e Models as the basis not only for a consis-
tent epistemology of systems, but also as an
explanation of the special properties of liv-
ing and cognitive systems.

e Control systems as the canonical form of
organization involving purpose or function.

While controls and models are distinct kinds of
organization, what they share is a common ba-
sis in semiotic processes, in particular the use of
a measurement function to relate states of the
world to internal representations. Perhaps for
this reason there has been some ambiguity in
the literature about the specific nature of con-
trols and models, and more importantly how the
interact. This has led to confusion, for exam-
ple, about the role of feedback vs. feedforward
control, and endo-models within systems vs. exo-
models of systems.

Consider first a classical control system as
shown in Fig. 1. In the world (the system’s en-
vironment) the dynamical processes of “reality”
proceed outside the knowledge of the system.
Rather, all knowledge of the environment by the
system is mediated through the measurement
(perception) process, which provides a (partial)
representation of the environment to the system.
Based on this representation, the system then
chooses a particular action to take in the world,
which has consequences for the change in state

of the world and thereby states measured in the
future.

Environment

Representation Decision—» Action

! |

Measurement

System

Consequences

World' -¢——Dynamics World

Figure 1: Functional view of a control system.

To be in good control, the overall system must
form a negative feedback loop, so that distur-
bances and other external forces from “reality”
(for example noise or the actions of other exter-
nal control systems) are counteracted by com-
pensating actions so as to make the measured
state (the representation) as close as possible to
some desired state, or at least stable within some
region of its state space. If rather a positive
feedback relation holds, then such fluctuations
will be amplified, ultimately bringing some crit-
ical internal parameters beyond tolerable limits,
or otherwise exhausting some critical system re-
source, and thus leading to the destruction of the
system as a viable entity.

Now consider the canonical modeling relation
as shown in Fig. 2. As with the control rela-
tion, the processes of the world are still repre-
sented to the system only in virtue of measure-
ment processes. But now the decision relation is
replaced by a prediction relation, whose respon-
sibility is to produce a new representation which
is hypothesized to be equivalent (in some sense)
to some future observed state of the world. To
be a good model, the overall diagram must com-
mute, so that this equivalence is maintained.

As outlined here, models and controls are dis-
tinct and atomic kinds of organization. We have
argued [8] that this capability begins with living
systems, and perhaps defined the necessary and
sufficient conditions for living systems.
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Figure 2: Functional view of the modeling rela-
tion.

2.2 Hierarchical Control

Of course, all of the relations described here are
a great deal more complex in real intelligent sys-
tems. In particular, usually controls and models
are considered together. This concept is fully de-
veloped elsewhere [7, 9]. We now summarize the
primary results of these considerations.

First, the classical view of linear control sys-
tems theory [14] is recovered by introduced a
“computational” step which plays the role of cog-
nition, information processing, or knowledge de-
velopment. Typically, extra or external knowl-
edge about the state of the world or the desired
state of affairs is brought to bear, and provided
to the agent in some processed form, for example
as an error condition or distance from optimal
state. So now measured states are manipulated
and compared to a goal state.

In particular, we are impressed by Bill Pow-
ers system for hierarchical control [15, 16, 6],
which he has succesfully generalized to explain
the architecture of neural organisms. As shown
in Fig. 3, he views the computer as a compara-
tor between the measured state and a hypothet-
ical set point or reference level (goal). This then
sends the second representation of an error signal
to the agent. He also explicitly includes reference
to the noise or disturbances always present in the
environment, against which the control system
is acting to maintain good control. For us, these
are bundled into the dynamics of the world.

Another great virtue of Powers’ control theory

g : ™
Environment
-~
System
Set Pointﬁ
/Comparator\
Representation Error\
Agent
Sensors (Decider)
A 3 )
Measurement Action
\World/
L Disturbances
. J

Figure 3: A Powers’ control system.

model is its hierarchical scalability. Fig. 4 shows
such a hierarchical control system, containing an
inner level 1 and the outer level 2. The first key
move here is to allow representations to be com-
bined to form higher level representations. In
the figure S and S are low distinct level sensors
providing low level representations R; and Rp to
the inner and outer levels respectively. But R;
is also sent to the higher level S3, and together
they form a new high level representation Rj.

The second step is the ability for the action of
one control system to be the determination of the
set-point of another, thus allowing goals to de-
composed as a hierarchy of sub-goals. In the fig-
ure, the outer level uses R3 to generate the action
of fixing the set point of the lower level. Note
how this recovers Meystel et al’s “Feature 10”7 of
multiscale knowledge representation where the
action of a lower level system is actually the goal
of an upper level system [13].

Notice also that the overall topology of the
control loop is maintained. While ultimately the
lower level is responsible for taking action in the
world, it is doing so under the control of the com-
parison of a high-level goals against a high-level
representation. Neural organisms especially are
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systems of this type, low-level motor and percep-
tual systems combining to accomplish very high-
level tasks. And of course, determination of the
outermost goal is not included within Powers’
formal model.

2.3 Anticipatory Control

While familiar to us as a standard engineering
discipline, a number of researchers are pursuing
the applicability of this kinds of semiotic control
[12]. It is also being generalized to a number of
other engineering [2] and scientific domains.
However, our normal sense of control combines
it with models, which are used to aid in decision-
making by predicting future states of anticipated
actions, using prediction of future events to guide
actions. This is what Ashby refers to as *
control” [4], or Rosen as “anticipatory” [17], or
Klir as feedforward [10]. In this architecture an
endo-model embedded within a control system is
used to make a decision as to which action to
take, and thus acts in the role of the agent. It is

‘“cause

this view which most dominates our conception
of the nature of control in general.

However, this architecture is actually highly
complex and special. It is shown in Fig. 5, where
now the agent is replaced by an inner system
which is both a model and a control system (the
arrows have been reflected diagonally to make
the graph planar and ease the drawing). This
inner system is a control system in the sense that
there are states of its “world”, its “dynamics”,
and an “agent” making decisions.

However, it is also a model in that the states
of its “world” are in fact representations, and
its “dynamics” is actually a prediction function.
The inner system is totally contained within the
outer system, and runs at a much faster time
scale in a kind of modeling “imagination”. The
representation R from the sensors is used to in-
stantiate this model, which takes imaginary ac-
tions resulting in imaginary stability within the
model. Once this stability is achieved, then that
action is exported to the real world.

Note that the outer control loop here is simple,
lacking computation. In Powers’ terms, there is
no set point which the state of the internal model
is being compared to. But this could be present
in a slight elaboration where an imaginary mea-
surement is taken from “world” and compared
to some set point. The outer error signal would
then be fed to change the imagined actions inside
the model until stability is achieved.

3 Tests for the Presence of
Control

Thus we have now transformed the original ques-
tion of “how do we measure intelligence?” to
“How can we as external observers determine
whether a target system manifests control rela-
tions with its environment?” and “How can we
then measure the degree and modalities of that
relation?” I would then offer some ideas based
on the work of Powers and his colleague Rick
Marken [11, 15, 16].
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Figure 5: Anticipatory control.

They address the question from the follow-
ing perspective. Control relations, in virtue of
the stability of the controled variables in the en-
vironment, have many of the characteristics of
other equilibrium phenomena. Both the thermo-
stat and the ball rolling to a stop at the bottom
of a hill evidence this kind of stability behavior.
In the first case, the ball does not want to roll
down the hill, but in a very real sense, the ther-
mostat does want to regulate its “perception” of
the state of the room temperature.

So how can we distinguish a complex dynamic
equilibrium from a control relation? Powers and
Marken do this distinguishing on the basis of
what they call The Test. It involves the sys-
tem acting in a way which is counter to physical
law: if the ball failed to roll down the hill, we’'d
be surprised, thus we hypothesize that such a
ball is manifesting a control relation. Similarly,
we would normally expect a room to come to
equilibrium with its environment. When it does
not, and we believe our dynamical model, then
we would hypothesize the presence of a control

device, and we might investigate and discover a
thermostat. The “intelligence” of such systems
is based on their manifesting a semiotic relation
which has been selected by evolution or by de-
signers, allowing the system to “choose” to act
counter to physical law.

Now the rub is that this Test thereby requires
the prior presence of a model of what the sys-
tem should be doing, so that we can be surprised
when it fails to do so. Thus our recognition of a
control relation in an exogenous system requires
of us an ezxogenous model of reality, whether or
not the system has any endogenous model itself.

4 Towards a Measure of

Control-Based Intelligence

So now, given this semiotic control-based view
of intelligence, we wish to go on and attempt to
quantify and characterize the degree and kind of
control relations present. Thus the problem of
measuring intelligence revolves around our abil-
ity to measure:



e The amount of phenomena under control;

e The number of environmental distinctions
measured by the system;

e The complexity of modalities of measure-
ment and control;

e The complexity of the environmental variety
available to the measurement and control of
the system;

e If hierarchical control is present, what is the
depth of the hierarchy of control; and

e [fanticipatory control is present, what is the
complexity of the internal, endogenous mod-
els?

No doubt in both real and designed systems
these are all related to each other in complex
ways. However, each of these quantitative terms
is effectively a statistical information measure,
a measure of variety or freedom. Thus th are
ammenable to information-theoretical measures
like entropies, based on quantities of variety, dis-
tinctions, and constraints which a control system
can recognize in its environment and then act on
in appropriate ways.
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ABSTRACT

This paper records some thoughts about defining and measuring machine intelligence. 1t touches
on (1) the shortcomings of any scalar metric; (2) the power of having mixes of intelligence types
in a population of machines; (3) the special issues related to “ common sense;” (4) the need to
broaden discussion beyond normally understood intelligence; (5) consistent with that, the need in
apopulation to assure for exploration and “mutation;” (6) some technical issuesin modeling
reasoning in agents; and (7) a methodology (exploratory analysis) for measuring intelligence that
emphasizes a diversity of contexts.

I ntroduction

One of the many lessons learned from a century of work on human intelligence is that
intelligence is multifaceted. It therefore appears wise to define and measure machine
intelligence as a multidimensional concept.*

Before elaborating, let me observe that some may quarrel with this conclusion. After al, in
many endeavors it has proved feasible to combine various factors into a single scalar quantity
that “reasonably” measures what we are interested in. We see thisin the applications of multi-
attribute utility theory (MAUT)? and in countless modeling problems where people introduce
abstractions that combine various factors in ways that appear adequately sound. Furthermore,
IQs, SAT scores, and GRE scores are ubiquitous in assessments ranging from the personal
(*Wow, Marcusisreally smart: he got adouble 800.”) to hard-nosed decisions by admissions
committees at universities and managersin industry. We al know that intelligence is a complex
issue, but most of us nonetheless use the simple metrics—at least to some extent. Moreover,
they appear to be more than mere crutches; i.e., they actually do correlate, at least to some extent,
with things we care about (e.g., performance in classes or in the business environment). And
shorthands are useful.

This said, the quality and depth of any discussion of machine intelligence and its measurement
would likely be greatly restricted by having areductionist goal such asfinding asingle “1Q.”
Talking in shorthand is an excellent way to “dumb down” conversations and inquiries.

Consider the following as part of an indictment:

The correlation of 1Q and SAT scores with subsequent performance in graduate school and
lifeis only very modest. Indeed, it is so modest that one can only puzzle about why so much

1 A major expositor of the multi-dimensional aspect of intelligence is Howard Gardner.

2 The classic reference is Keeney and Raiffa.



fussis made over the related tests. The answer appears to be only that the scores are the best
readily available predictors, even if they are poor predictors.®

Studies indicate that the predictive power of the ssmple metricsis particularly poor in
explaining, for example, the effectiveness of top executives.”

There are also “glitches” in thetests. Apparently, Richard Feynman’'s 1Q was rated as
“merely” 122.

At amore personal level, | believe that we probably all know individuals who would solidly
flunk tests of mathematics, even simple mathematics, but who are regarded as brilliant in
other ways—whether verbally, or, for example, in the arts.

| suspect that most of us also know individuals well who on the one hand scored very highly
on intelligence tests and yet lack the capability to excel in various higher level activities.
Perhaps they lack common sense; perhaps they lack creativity; perhaps they are so obsessed
with numbers that they cannot deal with fuzzier aspects of life.

Sallying forth into a more dangerous area, consider now what might be regarded as the
unmitigated stupidity of famous “geniuses.” In the military domain, one might think of
Napoleon, who marched on Moscow in the winter and lost nearly his entire army. Or, to
push the debating point even further, what should we make of certifiable sociopaths who
happen also to have |Qs? Some might claim “Oh, you’ re confusing intelligence with mental
health.” Perhaps, but which should we care most about when considering the performance of
future machines?

Let me now shift from the 1Q business to multi attribute utility theory. We know a great deal
about its usefulness and shortcomings. Personally, | urge students of policy analysisto savor the
multiple attributes of strategies and avoid combining them until and unlessit is necessary. The
paradigm for displaying results of policy analysisis, for most of my colleagues and me, isa
“scorecard’ in which one views the ratings of optionsin each of a number of aggregate
categories. We may or may not add up the scores for the purpose of having asingle, smple-
minded, result (e.g., for making cost-effectiveness comparisons), but if we do it isonly after we
have adjusted assumptions so as to assure that the aggregated result is“right.” By that | mean
that decision-analysis methods are often most useful when used iteratively: wetry to be logical
and explicit; we try to do things by the numbers; we look at the results; we then observe that they
are “wrong” (meaning that we don’t like them).> We go back to the assumptions and either
fiddle the input scores or muse a bit until we discover some hidden variables that are bothering
us, and affecting usimplicitly. Wetheniterate. And so on. At the end of the process, the
algorithms may work and we may have a sense that we understand the problem, but this was due
to the disaggregated process of getting to that point. At thetrivial level, | like to challenge

® Onediscussion of thisisin Robert Klitgaard' s review of admission criteria. Y et another isin a Robin Dawes
book.

41t is perhaps of interest to note that the SAT scores of both Presidential candidates have been bandied about in the
press. Neither candidates scores appear outstanding when compared to those of top-half applicants to graduate
schools. Given the achievements of the individualsto date, doesn’t thistell us something?

® A familiar example here is how most of us read product evaluations in Consumers Reports or PC magazines.



students with a car-buying problem, the purpose of which isto demonstrate that the usual hard-
headed approach does aterrible job in representing our real values. Some individuals, for
example, realy do want ared Mercedes, and it’s hard to get that answer when looking at
mileage, repair costs, etc. etc. Even if one has a category for “prestige” or some such, it isvery
difficult to get the red Mercedes as the answer unless one essentially zeros out the other
categories or recoghizes the shortcomings of the MAUT methodol ogy with its assumptions of
linearity and related substitutability. On the other hand, it can usefully determine the implicit
dollar value we are placing on “Red” and “Mercedes.”

In summary, | don’t believe that we should pursue the topic of the summer conference with the
goal of finding a ssmple-minded metric such as IQ or robot versions of GREs. Nor, intuitively,
do | have faith here in something that assumes situation independence, linearity, and so on.

The Power of Mixes

Once we recognize that intelligence is a multifaceted concept, and that society places a high
value on all aspects of intelligence, broadly construed, then we are also ready to recognize the
value of healthy mixes. Instead of optimizing the average“1Q” of a robot community, we
should instead seek to “ optimize” the effectiveness of the community—perhaps omitting those
items we expect or want humans to continue to do. Moreover, in “optimizing” we should apply
nonlinear schemes that assure that we don’t end up with able medioctrities. For example, in
human society most of us believe that we benefit from having at |east some people who are
extremely good at mathematics, physics, written verbal matters, spoken language, the arts, and
even the difficult human skills associated with the very best of leaders on the one hand, or the
best of clinical psychologists on the other. But we don’t require all of these skills from
everyone.

To use adifferent analogy, consider how we go about dealing with medical issues. Perhaps
some readers have a single physician who “does everything” from delivering babiesto extracting
brain tumors, but the rest of us seek to have a mixture that includes top diagnosticians (the best
of whom are very smart in the traditional sense), very good internists who deal more with
quantity than the with the hardest cases, and various and sundry speciaists. Some of the
specialists may be superb at some skills (e.g., microsurgery), but pretty poor at others. Whether
thisis an urban myth or reality, | don't know, but | believe that it is widely accepted that
surgeons are not uncommonly a bit blockheaded and lacking in both subtleties and ability to read
and care for human beings except in “mechanica” ways. Many surgeons even kid about this,
describing themselves as world-class plumbers. Now, suppose that we wanted to choose a mix
of doctors for acommunity on the moon. Would we look for some metric, test everyone, and
then optimize, or would we instead identify many attributes and assure that all were adequately
represented?

The Fundamental Challenge of Defining and M easuring Wisdom and Common Sense

Despite familiarity with the hilarious (or infuriating) shortcomings of some “artificial
intelligence” programs, | am not particularly mystical about issues such as wisdom and common
sense. Intuitively, | believe that they have to some extent been over-rated as a reaction to
failures of the straightforward rule-based approachesin Al. | suspect that with large enough
computers and sufficient emphasis on and time spent in training with neural nets and other
technologies, machines will eventually have remarkably good skills that include what ook like
wisdom and common sense.



Nonetheless, this remains afrontier area for research. Measurements would depend not just on
the intelligence “wired in,” but the intelligence devel oped by experience and the data bases
provided initially and built up over time. Aswe know from discussions in many forums, itis
notoriously difficult at present to measure the information, knowledge, or value in data bases.
This, then, isjust awarning of a different type.

AreWe Talking About Intelligence, Humanity, or What?

We may be erring in focusing too exclusively on “intelligence,” given that the term
“intelligence” is usually associated with matters distinct from ethics, morality, or spiritualism
(broadly construed). It isof interest to note that this mistake was not made by the late, great
Isaac Asimov. It was not accidental that Asimov, rather than more pedestrian writers, took on
these issues directly.

Asahypothesis, it seemsto methat it will continue to prove impossible to achieve top-notch
“intelligent performance” across a wide range of situations without having principles that
look more like ethics than electrical engineering. We know that one of the special
characteristics of intelligent people is that they learn, taking on knowledge and skills that go
beyond what they were “ programmed for.” However, without some kind of principlesto act as
filters, what machines (or, for that matter, people) choose to learn and experiment with may
prove dangerous. Again, we can look to science fiction for examples.

Assuring Exploration and Mutation

Although we may differ among ourselves about the meaning and existence of “progress,” most
of uswould agree that the processes of evolution such as mutation and natural selection have
profound effects. Suppose that there were no mutations, or that there were no means by which to
select. What might then have happened? In a sense, we know. For example, we know of the
extreme vulnerability of populations when they encounter a disease that is new to them. And we
know of the extreme vulnerability of overly “nice’” communities when they become prey to “bad
guys.” What implications does this have for defining and measuring machine intelligence?
Weéll, the answer would differ if we had in mind only specialists such as window washers, rather
than colonizers of some hostile planet. However, for some purposes at least, | would think that
what we would seek to define and measure—perhaps under the rubric of a generalized notion of
“intelligence—would include attributes such as audacity, curiosity, and the ability to “ mutate”
(in asense to be defined).

Some Technical Issuesin Thinking About Building Intelligent Models

Much has been written about artificial intelligence modeling. | would add here only afew
observations based on personal experience. Some of thisinvolved building a massive analytic
war gaming system during the cold war, one in which we had Red, Blue, and Green agents
representing the Soviet Union/Warsaw Pact, United StatessNATO, and various third countries.
These agents made decisions about war, strategy, escalation, deescalation, and termination
amidst the events generated by a simulation.

Thefirst observation is that such models are arguably likely to be more useful if they reflect a
strong design rather than, e.g., a more unstructured approach such as lots of miscellaneous rules
and an inference engine. Even if performance in particular tasks might be very high with the
latter approach, credibility and understandability tend to go with structure and with the ability to
trace rationales.



Machines will need models of other machines, and highly simplified models of the other
machines’ modeling. There is no infinite recursion here because—if for no other
reason—uncertainties in key inputs to judgments are sufficiently large that fine-tuning doesn’t
work well. In our work, Blue's decisions were based on amodel of Red, which in turn had a
highly simplified model of Blue. Both Red and Blue could learn to some degree as the
simulation proceeded, although this was wired-in learning such as changing planning factors
based on events in the simulation and assessing which opponent model seemed best given
observed behavior.

The second observation is that multiresolution modeling (MRM) is extremely important in such
work (and in other types of modeling aswell). By MRM | mean modeling that provides
alternative levels at which to make inputs, as distinct from modeling that merely provides
intermediate- and highly aggregated displays, but that does all calculations from the lowest level
upward.®

MRM isimportant for many reasons, but one of them isrelevant here. Higher level intelligent
behavior depends on higher-level models, not on calculations from incredible depth. The
reasons relate to the enormous uncertainties that exist at lower levels (higher resolution)—not
only in “data,” but also in algorithms. Thisis part of the celebrated “bounded rationality”
problem explained by Herbert Simon. Asaresult, real people (and at least some intelligent
models) must be able to reason and decide at the level of abstractions. Abstractions often get
built into models willy-nilly, but there is great benefit in designing them in from the start.
Ideally, models would also be able to infer their own abstractions on the basis of experience.
That is surely plausible with newer technology, but we' ve got aways to go, to say the least. In
the meantime, good design can be quite helpful. | believe that one of the best ways to “ measure’
the intelligence of machines will probably be to review the hierarchical conceptsit uses and the
processes used to move up and down those hierarchies. That is, just as we assess unintelligent
computer programs not only in terms of sampled behavior, but also in terms of inputs, structure,
etc., so also for intelligence.

Some of this has interesting linkages to common sense, understandability, cause-effect
relationships, and learning. Asarule of thumb, | believe that a model intended to work at level n
of resolution should be accompanied by models at levelsn+1 and n-1. The more abstract version
may be needed for planning functions such as screening, and the more detailed version may be
needed to provide “explanations’ (a highly relative concept) and the potential for akind of
learning that would adjust the level-n model. Experiences that may appear magical at the
intended level, level n, may be explainable at level n+1 of resolution and it may be possible to
use the experiences to recalibrate lower-level assumptions and generate new abstractions.
However, if the more detailed model doesn’t even exist, then it would seem that the only
recourse would be for the machine to use various and sundry techniques such as statistical
analysisto infer what are additional variables. There are severe shortcomings to such an
approach—if, at least, it isfeasibleto do better. Thissaid, it isclear that humans do have the
capability—with considerabl e effort—to see new things and find new ways to reason without

¢ One paper on the subject is Davis and Bigelow, Experiments in Multiresolution Modeling, RAND, 1998, which is
available online at www.rand.org/personal/pdavis. Alex Mystel has also written on related subjects for some years.
Bernie Zeigler discusses related matters such as morphism in his text (Theory of Modeling and Smulation, 2000).



them having been wired in our software. But we all know how useful it is to have analogies,
metaphors, or theories to help.

It follows that one measure of intelligence might be the structural richness of reasoning models:
isit sufficient to accommodate a good deal of experience-based learning?

Exploratory AnalysisasaKey to Measuring Intelligence in an Uncertain World

One of the principles of our discussion of intelligence should be that the intelligence of a
machine cannot usefully be judged independent of context. “Performance” measures exist, of
course (e.g., processing speed), but how “intelligent” something is needsto be measured in
relationship to both tasks to be done and contexts in which to do them. These, of course, are
extremely uncertaint. Thisis obvious enough, but by analogy with my work in policy analysis|
would argue that special methods are needed to make use of thisnotion. In particular, we should
plan to construct what | have variously called “scenario spaces’ or “assumptions spaces’ in
which to test our behaviors. Not only isit insufficient to pick an allegedly representative
context, and work away at measurements for that, it is also not sufficient to do sensitivities
around that context. Key reasons are asfollows. First, there may not be a meaningful best-
estimate or representative context; instead, there may be massive uncertainties that make any of
many possible and very different contexts plausible. Second, the effects of contextual variables
may be highly interactive, so that any linear approach to sensitivity testing would fail.

The approach my colleagues and | have used in this regard involves “exploratory analysis,”
which emphasi zes studying the problem (e.g., assessing behavior’ s effectiveness) in avast
scenario space that is designed for comprehensiveness rather than detail. | refer to both
parametric and probabilistic explorations. In the first, one discretizes the context’ s defining
variables, and creates experimental designs that consider al (or acleverly sampled subset) of the
many combinations. In simple cases, we can do the full factorial design. In the second
approach, one represents the defining variables’ uncertainty with uncertainty distributions.
Ultimately—after initial exploration—one settles on a hybrid approach in which some key
variables are parameterized (so that one can see cause-effect relationships in output displays) and
the others are treated probabilistically and convolved.

It is possiblein such exploratory-analysis work to gain insights about a system’ s effectiveness
over an enormous range of conditions (and with different measures). Once that is done, one
may also want to delve into details—perhaps far into the morass of details—but at least one will
know where the potential paydirt is.”

Fortunately, recent technology makes a great deal of thistype of thing feasible—even with PCs
on our desktop at home. We are already at the stage where much can be learned by “flying
through the space of outcomes’ using clever graphics, and thereby seeing what regions (what
combination of variable values) are most important (e.g., acceptable or unacceptabl e outcomes).

These exploratory analysis methods could prove quite powerful in the task of assessing the
intelligence of machines.

" Exploratory analysis is discussed at some length in a forthcoming monograph, “ Exploratory Analysis of Strategy
Problems Amidst Massive Uncertainty,” by me and Richard Hillestad. A short paper on the subject is available
upon request.
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Abstract

Asresearch expandsin multiagentintelligent systems, in-
vestigators need new toolsfor evaluating the artificial soci-
eties they study. It isimpossible, for example, to correlate
heterogeneity with performancein multiagent robotics with-
out a quantitative metric of diversity. Currently diversity is
evaluated on a bipolar scale with systems classified as ei-
ther heterogeneous or homogeneous, depending on whether
any of the agentsdiffer. Unfortunately, thislabeling doesn’t
tell us much about the extent of diversity in heterogeneous
teams. How can it be determined if one system is more or
less diverse than another ? Heterogeneity must be evaluated
on a continuous scale to enable substantive comparisons
between systems. To enable these types of comparisons, we
introduce: (1) a continuous measure of robot behavioral
difference, and (2) hierarchic social entropy, an application
of Shannon’s information entropy metric to robotic groups
that provides a continuous, quantitative measure of robot
team diversity. The metric captures important components
of the meaning of diversity, including the number and size
of behavioral groups in a society and the extent to which
agents differ. The utility of the metrics is demonstrated in
the experimental evaluation of multirobot soccer and multi-
robot foraging teams.

1 Introduction

Heterogeneous systems are a growing focus of robotics
research [FM97, GM 97, Par94, Bal99]. Presently, diversity
inthese systemsis evaluated on a bipolar scale; systems are
classified as either heterogeneous or homogeneous depend-
ing on whether any of the agents differ. This view islim-
iting because it does not permit a quantitative comparison
of heterogeneous systems. A principled study of diversity

*This is an abbreviated version an article published in Autonomous
Robots, vol 8, no 3.

requires a quantitative metric. Such a metric would enable
the investigation of issues like the impact of diversity on
performance, and conversely, the impact of other task fac-
torson diversity. To address this, we propose social entropy
(computed using Shannon’s information entropy formula-
tion [Shad9]) as an appropriate measure of diversity in robot
teams.

In this paper we briefly introduce the mathematical for-
mulation of individual robot difference and robot soci-
etal diversity. More details and examples are provided in
[Bal00].

2 Themeaning of diversity

What does diverse mean? Webster [MW89] providesthe
following definition:

di.verse adj 1: differing from one another: unlike 2: com-
posed of distinct or unlike elements or qualities

Clearly, difference plays a key role in the meaning of di-
versity. In fact, an important challenge in evaluating robot
societal diversity is determining whether agents are alike or
unlike. Assume for now that any two agents are either alike
or not.

Now consider what diverse means for societies com-
posed of severa distinct subsets. To make the discussion
more concrete, suppose the “society” under examination is
a collection of four different shapes: circles, squares, tri-
angles and stars. Figures 1 and 2 illustrate several sets of
shapes as examples of ways the groupings can differ. The
goad is to develop a quantitative metric that captures the
meaning of diversity illustrated in these examples.

First, how should the number of distinct subsetsina soci-
ety impact the measured diversity? Consider Figure 1: four
sets of 12 shapes. Each set has a different number of ho-
mogeneous subsets; from one homogeneous subset in Fig-
ure 1la (al circles) to four in Figure 1d. This example sug-
gests that the number of homogeneous subsets in a society
is an important component of measured diversity.
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Figure 1. Several collections of shapes. The number of homogeneous subsets in each collection
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Figure 2. In both of these groups there are the
same number of shapes and the same num-
ber of homogeneous subsets, but the propor-
tion of elements in each subset is different.

Now consider Figure 2. Which group of shapes is more
diverse? In both cases there are exactly 12 shapes and ex-
actly two different types. In Figure 2a however, thereis a
much higher proportion of circles than in 2b where thereis
an equa number of circles and squares. This example sug-
gests that the relative proportion of elements in each subset
isan important component of diversity.

These exampl es highlight the fact that the distribution of
the agents between homogeneous subsets is at the core of
the meaning of diversity. In light of this observation, we
make the following commitment: the measured diversity
of a multiagent society depends on the number of homo-
geneous subsets it contains and the proportion of agentsin
each subset.

3 Simplesocial entropy

How should diversity be quantified? The properties
Shannon sought in a measure of information uncertainty
are also useful in the measurement of societal diversity
[Shad9]. Infact, researchers in anumber of disciplineshave
adopted information theoretic concepts of diversity. Infor-
mation entropy is used by by ecologists as a means of eval-
uating species’ diversity [LVW83, LW80, Mag88], by so-

ciologists as a model of societal evolution [Bai90], and by
taxonomists as a tool for evaluating classification method-
ologies[SS73, JS71].

Before proceeding we must introduce some notation:

e Risasociety of N agentswith R = {r1,rz,rs...r5}

e Cisaclassification of R into M possibly overlapping sub-

Sets.
e ¢; isanindividual subset of C withC = {c1,c2,cs...car}
o pi = =l istheproportion of agentsin the ith subset;
DT
and Zp,‘ =1.

In the last section we argued that the measured diver-
sity of a system should reflect the number of groupsin the
system and the distribution of elements into those groups;
diversity should therefore be a function of M and the p;s
as defined above. Assume that a diversity metric exists and
cal it H. The diversity of a society partitioned into A/ ho-
mogeneous subsets iswritten H (p1, p2, ps, ..., par). SO, for
instance, the diversity of the group of shapes depicted in
Figure 2ais H (45, 13), whilethe diversity for the group of
shapesin Figure 2bis H (£, 1). The diversity of a particu-
lar robot society R, can also be expressed H(R,).

Shannon prescribed three properties for a measure of in-
formation uncertainty [ Shad9]. With slight changes in nota-
tion, they are equally appropriate for a measure of societal
diversity:

Property 1 continuous. H should be continuousin the p;.

Property 2 monotonic: If al the p; are equd, (i.e. p; =
+), then H should be a monotonically increasing
function of M. In other words, if there are an equa
number of agents in each subset, more subsetsimplies
greater diversity.

Property 3 recursive: If a multiagent society is defined
as the combination of several digjoint sub-societies, H
for the new society should be the weighted sum of the
individual values of H for the subsets. This property
is important for the analysis of recursively composed
societies (e.g. [MAC97]).
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Figure 3. A new society (right) is generated
by combining two others (left). The diversity
of the new society is a weighted sum of the
individual values of H for the subsets.

The meaning of the requirement that A be recursive is
illustrated in Figure 3. The two groups on the left are com-
bined into a new society on the right. In general, for a soci-
ety R.. composed of two societies, R, and R, therecursive
criteria ensures that:

H(R.) = H(a,B)+aH(Ry)+BH(Rs)

where « isthe proportion of agentsin R, 3 is the propor-
tionof agentsin Ry and o + 3 = 1.
Shannon’s information entropy meets all three criteria

[Shad49]. The information entropy of a random system X
isgiven ast:

M
H(X) = =K pilog,(p) @

where K isapositive constant. Because X" merely amounts
to the choice of a unit of measure, Shannon sets X' = 1
[Shad9]. Equation 1 (with K = 1) is adopted for the mea-
surement of multiagent societal diversity. H(R,) is the
simple social entropy of agent society R ..

1H (X)) isused in coding theory as alower-bound on the average num-
ber of bits required per symbol to send multi-symbol messages. The ran-
domvariable X assumesdiscretevaluesintheset {z 1, z2, s ...z} (the
alphabet to be encoded) and p ; representsthe probability that {X = =;}.

In addition to Properties 1, 2 and 3, H has a number of
additional propertiesthat further substantiate it as an appro-
priate measure of diversity. First, as we would expect, H
is minimized for homogeneous societies; these groups are
the least diverse. Also, for heterogeneous groups H ismax-
imized when there are an equal number of agents in each
subset. More precisely:

Property 4: H = 0 if and only if al the p,; but one are
zero. In other words H is minimized when the system
is homogeneous. Otherwise H is positive.

Property 5: For agiven M (number of homogeneous sub-
sets), H is maximized when all the p; are equdl, i.e.
pi = 7. Thisis the case when there are an equal

number of agents in each subset.

Property 6: Any change toward equalization of the pro-
portions py, pa, . . ., py increases H. Thusif p; < ps
and we increase p;, decreasing p» an equal amount so
that they are more nearly equal, H increases. Anim-
portant implication is that there are no locally isolated
maxima.

Even if these properties are desirable in a diversity met-
ric, why choose information entropy over another function
possessing the same properties? Because, as it turns out,
information entropy (Equation 1) is the only function sat-
isfying Properties 1, 2 and 3. Shannon proved this result
using the mathematically equivalent properties he required
of an information uncertainty metric [Sha49].

The entropy of a number of example systems using this
metricisgivenin Figure 4.

4 Classification and clustering

The discussion of diversity |eft open the question of how
agents are classified into subsets. It was assumed that any
two agents are either alike (in the same subset) or unlike. In
actuality, the robotic agents to be classified are distributed
in a multi-dimensional space where the dimensions cor-
respond to components of behavior and difference corre-
sponds to the distance between agents in the space. Dif-
ference between agentsis likely to vary along a continuous
spectrum instead of in the binary manner assumed previ-
ously.

The challenge of finding and characterizing clusters
of elements distributed in a continuous multi-dimensional
space is exactly the problem faced by biologistsin building
and using taxonomic systems. In the case of biology the
dimensions of the space represent aspects of morphology
or behavior that distinguish one organism from another. In
thisresearch the dimensions are the components of behavior
that distinguish one robot from another.
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Figure 4. A spectrum of diversity. In the diagram above, each of the six squares encloses a multiagent
system, from least diverse (homogeneous) on the left, to most diverse (most heterogeneous) on the
right. The simple social entropy, a qualitative measure of diversity, is listed underneath each system.

The aims of taxonomic classification are distinct from
other types of classification in that one goal isto arrange the
elements in a hierarchy reflecting their distribution in the
classification space. Conversely, many classification tasks
only require a simple partitioning of the space (e.g. cate-
gorizing e-mail into folders). Taxonomic trees (the end re-
sult of the taxonomic classification process, e.g. Figure 5)
are potentially more useful in the analysis of diversity than
simple partitioningsbecause they provide more information o0 °
about the society’s spatial structure.

Biology offers arich literature addressing this problem.
Infact, an entirefield — numerical taxonomy — is devoted
to ordering organisms hierarchically using principled nu-
merical techniques [SS73, JS71]. Many of the approaches
in numerical taxonomy are directly applicable to the prob-
lem of robot classification. They include mechanisms for
building and analyzing classification structures (e.g. taxo- |
nomic trees) and for identifying organisms on the basis of
these structures.

Techniques from numerical taxonomy address the prob-
lem of how to classify organisms, or groups of organisms,
at various levels. At the lowest level in biological classifi-
cation for instance, humans and gorillas are more likely to |__| ﬁ |
be classified together than, say, humans and dogs. But at r_l I_-I

a higher level, primates are in fact grouped with caninesin

the class mammalia. Dendrograms provide an orderly hier- Figure 6. The branching structure of the den-
archic view of the these classifications. While dendrograms drograms for these two societies is the same.
per se are not necessary for the evaluation of diversity, they However, the more compact distribution of el-
are useful visualizationtoolsand their construction provides ements in the system on the upper right is
cluesfor the evauation of overall societal diversity. reflected in the branches being compressed

Dendrograms are constructed using a clustering algo- towards the bottom of the corresponding den-
rithm parameterized by A, the maximum difference allowed drogram (lower right).

between elementsin the same subset. The notation D(a, b)
isused to refer to the difference between the elements « and
b. In most applications the difference metric is normalized
so that taxonomic distance between any two elements varies
between 0 and 1. When h = 1 al elements are grouped
together in one cluster (see the cluster at the top right in
Figure 5 for example). As h isreduced from 1 downto O
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Figure 5. Example classification using numerical techniques. The top row shows how the system
is clustered at several levels, parameterized by taxonomic level i (h is distinct from information
entropy H). The classification is summarized in a taxonomic tree, or dendrogram (bottom). Strong
similarities between elements are indicated by grouping near the bottom of the dendrogram; weaker
similarities between groups are reflected in converging branches at higher levels.

cluster boundaries change; the number of subsets increases
as they split into smaller clusters. The splits are reflected
as branches in the dendrogram. Finally, when A = 0 each
element is a separate cluster; a “leaf” at the bottom of the
dendrogram “tree.”

Dendrograms can reveal subtle differences in societal
structure. Figure 6 for example, shows two societies with
the same relative arrangement of elements, but one group-
ing is compact while the other is spread out over a larger
area. The difference in scale is reflected in a compressed
dendrogram for the spatially compact society (Figure 6
right). Can these differences be accounted for in the evalu-
ation of diversity?

The spatial extent of elements in a taxonomic space isa
reflection of the degree of difference between agents. Note
that sensitivity to the degree of difference between elements
in hierarchic clustering depends on h. Because h is a pa-
rameter of the clustering algorithm, it can be varied to ex-
amine clusterings at any scale. Hierarchic agorithms are,
in effect, variable power clustering microscopes. For values
of h near zero the tiniest difference between elements will
cause them to be classified separately, while the clusterings
at large values of h revea societal structure at a macro-
scopic level. This feature is exploited in the development
of a diversity measure sensitive to differences in the spatial

size of societies.

5 Hierarchic social entropy

Now consider how these toolsfrom numerical taxonomy
can be applied to the measurement of diversity. The dis-
cussion of hierarchic clustering algorithms above described
how the number and size of clusters depend on /. But how
is simple socia entropy impacted by changesin 4? Since
the partitioning of a society is based on & the entropy also
depends on it. An example of the relationshipisillustrated
in Figure 7. Entropy changes in discrete steps as 4 in-
creases. Note that points where change occurs correspond
to branch pointsin the dendrogram.

Compare the dendrograms and entropy plots of the two
societies in Figure 7. As in the earlier example, the two
groups have the same relative structure, but the society rep-
resented on the right is more compact, resulting in branch-
ing compressed towards the bottom of the tree. The differ-
encein scaleisalso readily apparent in the plots of entropy.
Entropy drops to zero much more quickly in the plot cor-
responding to the compact society. Because the value of
simple entropy depends significantly on 2 when hierarchic
clustering is used, we augment the notation to account for
this:

H(R,h) = H(R) fortheclustering of R at taxonomic leve(2)
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Figure 7. Entropy depends on h. A compari-
son of entropy versus h for for two societies.
For clarity, the dendrogram is rotated 90 de-
grees.

H isafunction of R and h because the classification of
agents into subsets, and therefore the entropy, depends on
them both. This highlights the fact that the entropy of a
particular clustering is only a snapshot of the society’s di-
versity. A comprehensive evaluation of diversity should ac-
count for clustering at al taxonomic levels. This is eas-
ily accomplished using the area under the entropy plot as a
measure of diversity. Thisaugmented metric, called hierar-
chic social entropy, is defined as:

S(R) = /OOH(R,h)dh ®)

where R is the robot society under evaluation, h is a pa-
rameter of the clustering al gorithm indicating the maximum
difference between any two agents in the same group and
H(R, h) isthe simple entropy of the society for the cluster-
ing at level h. Notethat as h — oo apointisreached where
all elements are clustered in the same subset (the maximum
taxonomic distance). H (R, h) dropsto O at this point. In
the behaviora difference measure used in this work, the
maximum possible difference between elements is fixed at
1.0, so the upper limit of the integration is 1 rather than oo
asinthe genera case.

Hierarchic socia entropy is a continuous ratio measure;
it has an absolute zero (when all elements are identical) and
equal units. Thisenables atotal ordering of societies onthe
basis of diversity. It aso provides for quantitative results of
theform “R,; istwice as diverse as R, Thisis a signifi-

entropy

.38 42 74

Figure 8. Hierarchic social entropy (bottom)is
computed for three societies (top). The val-
ues are 0.715 for the system on the left and
1.00 for the system on the right. The calcu-
lated value increases as the element on the
upper right is positioned further away from
the group. Dendrograms for the groups are
also displayed (middle row).

cant advantage over the categorization of systems as simply
“homogeneous’ or “heterogeneous.” Three example calcu-
lations of hierarchic social entropy are providedin Figure 8.

6 Behavioral difference

To summarize: hierarchic clustering is a means of divid-
ing a society into subsets of behaviorally equivalent agents
at a particular taxonomic level. Diversity is evaluated at
each taxonomic level based on the number of subsets and
the number of robotsin each subset at that level. Integrating
the diversity across all taxonomic levels produces an over-
all measure of diversity for the system. Previous sections
have described the overall diversity metric and agorithms
for clustering the agents into subsets. This section focuses
on the difference metric used for clustering.

How should the behavior of two agents be compared?
The technique advocated here is to look for differences
in the agents behavioral coding. In many cases (eg.
[BBC*95, Mat92, GM97]) robot behavior is coded stati-
cally ahead of time, thus individuals may be directly com-
pared by evaluating their behavioral configuration. Learn-
ing multirobot systems (e.g. [Bal97, Mat94]) pose a chal-



lenge because their behavior evolves over time. To avoid
that problem inthisresearch, the policiesof learning agents
are evaluated after agents converge to stable behavior.

This approach depends on three key assumptions:

Assumption 1: At the time of comparison, the robots
policies are fixed and deterministic.

Assumption 2: The robots under evaluation are substan-
tially mechanically similar: differencesin overt behav-
ior are influenced more significantly by differencesin
policy than by differences in hardware.

Assumption 3: Differences in policy are correlated with
differences in overt behavior.

If these conditions are not met in a particular multirobot
system, the approach may not be appropriate. But the as-
sumptionsare reasonabl e for the conditionsof thisresearch,
namely: experiments conducted on mechanically similar
robots built on the same assembly line. Control systems
running on the robotsdiffer only in the data specifying each
agent’s policy. The comparison of these policiesis the crux
of the approach.

To facilitate the discussion, the following additional
symbols and terms are defined:

e :isarobot’s perceptual state.

e a isthe action (behavioral assemblage) selected by arobot's
control system based on the input :.

o w;isr;’spolicy; a = m;(1).

. p; isthe number of times r; hasencountered perceptual state
@ divided by the total number of times all states have been
encountered. Experimentally, p; is computed post facto.

The approach is to evaluate behavioral difference by
comparing the robots’ policies. The two foraging robotsin-
troduced earlier, for example, exhibit behavioral differences
that are reflected inand caused by their differing policies. In
the terminology introduced above, i represents the percep-
tual features an agent uses to selectively activate behaviors.

Definition 1: r, and r,, are absolutely behaviorally
equivalent iff they select the same behavior in every
perceptua state.

In complex systems with perhaps thousands of states
and hundreds of actions it may aso be useful to provide a
scale of equivalence. Thiswould allow substantially similar
agents to be grouped in the same cluster even though they
differ by a small amount. The approach is to compare two
robots, r, and r;, by integrating the differences between
their responses, | 7, (i) — () | over all perceptual states:.
If the action is a single-dimension scalar, as in a motor cur-
rent for instance, the difference can be taken directly. How-
ever, complex actionslikewander and acquire are treated as
nominal values with response difference defined as 0 when
m4(i) = mp(7) and 1 otherwise. This approach is often used
in classification applicationsto quantify difference between

nominal variables (e.g. eye color, presence or absence of a
tail, etc.). Using this notation, a simple behavioral differ-
ence metric can be defined as:

D'(rars) = /m J—mG) [di @

or for discrete state/action spaces:
- Z | 7a(i) = mo(i) | ®)

where % is a normalization factor to ensure the difference
ranges from O to 1. In the case of the discrete sum, n corre-
sponds to the number of possible states. If », and r, select
identical outputs(m,(¢) = m(¢)) inall perceptua states (7),
then D' (7,4, 7,) = 0. When r, and r;, select different out-
putsinall cases D' (r4, rp) = 1. Inthe numerical taxonomy
literature, this difference is called the mean character dif-
ference [SS73]. The calculation parallelsthe idealized eval-
uation chamber procedure introduced earlier (Figure ?7?).

Equations 4 and 5 weigh differences equally across all
perceptual states. This may be problematic for agents that
spend large portions of their time in a small portion of the
states. Consider two foraging robotsthat differ only in their
reaction to blue attractors. If, in their environment, no blue
attractorsare present the agents woul d appear to an observer
to have identical policies.

There may be other important reasons certain states are
never visited. In learning a policy, for instance, the robots
might discover in early trials that certain portions of the
state space should be avoided due to large negative rewards.
Because these portions of the space are avoided, the agents
will not refine their policies there, but avoid them entirely.
It is entirely possible for the agents to differ significantly
in these portions of the space even though they may appear
externally to behave identically.

To address this, the response differences in states most
frequently visited should be emphasized while thosethat are
infrequently experienced should be de-emphasized. This
is accomplished by multiplying the response difference in
each situation by the proportion of times that state was vis-
ited by each agent (p!, + p;). Formally, behavioral differ-
ence between two robots r, and r is defined as:

D(ra,ry) = /Mm(z)—m()mz ©6)

2

or in discrete spaces

Dirar) = S I ) ni) @

B

When r, and r, select differing outputsin agiven situation,
the difference is normalized by the joint proportion of times
they have experienced that situation.



7 Conclusion

Thiswork is motivated by the idea that behavioral diver-
sity should be evaluated as aresult rather than an initial con-
dition of multirobot experiments. Previously, researchers
configured robot teams as homogeneous or heterogeneous
apriori, then compared performance of the resulting teams
[FM97, GM97, Par94]. That approach does not support
the study of behavioral diversity as an emergent property
in multirobot teams.

Defining behaviora diversity as an independent rather
than dependent variable enables the examination of hetero-
geneity from an ecologica point of view. How and when
does diversity arise in robot teams interacting with each
other and their environment? This work provides the nec-
essary quantitative measures for this new type of investiga-
tion.

In this paper we introduce a mathematical definition of
agent difference that can be used to group agents accord-
ing to similarity. The grouping (or clustering) of agentsis
parameterized by h, alimit on how different agents can be,
yet still be grouped in the same cluster. An overall diversity
metric, hierarchical socia entropy may then be computed
using the difference metric, A, and clustering algorithms
originally developed by biologists for taxonomic classifi-
cation.
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Developmental Performance
Metrics for the Evaluation of

Artificial Intelligence - A Proposal

By Dr. Anat Treister-Goren, Jack Dunietz, and Jason Hutchens*

Abstract

This paper proposes evaluation metrics for artificial intelligence that are based on two
assumptions: that the Turing Test provides a sufficient subjective measure of machine
intelligence, and that a behaviorist approach is necessary to achieve true artificial
intelligence.

Introduction

Artificial Intelligence: definition precedes evaluation

The artificial intelligence (Al) field has strayed very far from its original interpretation by its
unofficial founder, Alan Turing. Turing, who suggested a strict criterion for “intelligence”,
devised what came to be known as "The Turing Test", by which a computer program is
said to be “intelligent” if (and only if) it “fools” a human into believing it is human. In the
philosophical journal Mind (1950), Turing1 posed the question "Can a Machine Think?" His
answer was that if the responses from the computer were indistinguishable from those of a
human, the computer could be said to be thinking.

Despite the strict criterion suggested by Turing, Al researchers diverged in multiple
directions of inquiry. Today, referring to “The Al field” could mean a variety of topics
including but not limited to intelligent agents, chatterbots, pattern recognition, voice
recognition, machine learning or expert systems. Al applications include applications in
medicine, financial investing, computer games, business, and manufacturing. Some even
consider word-processing software or home appliances as Al. The field is currently in a
contentious state. Even though important work has been conducted in terms of
sophistication and expertise of programs, the vision that motivated the birth of the Al field

*All authors are with Ai (Artificial Intelligence NV). Contact information for Dr. Anat Treister-Goren: anat@a-i.com



is not yet fulfilled: there is neither sufficient cooperation nor agreement among its
researchers.

The unfortunate result of this trend is that true advancement is inhibited. We believe,
however, that a paradigm shift is inevitable. With this in mind, we propose to establish new
standards and renew original concepts in an attempt to unify the field and establish
evaluation standards.

In this paper we shall demonstrate that Turing’s measure of artificial intelligence is indeed
an appropriate method of evaluation. We show that this is particularly true when
behavioristic approaches are applied to Al. Further, we maintain that a developmental
approach is a necessary prerequisite for the emergence of true Al, and we show that it
has proved successful in other fields. We then introduce our proposed evaluation metrics,
and conclude with speculation about future progress in Al.

Renewing the definition: Turing was right.

The Turing Test

In 1950, Turing described the imitation game, nowadays referred to as the Turing Test,
whereby an interrogator must determine which of two subjects is a human being, and
which a computer program. Turing concluded that an inability on the part of the
interrogator to reliably make a correct determination is indicative of intelligence on the part
of the computer program.

The Turing Test is an appealing measure of artificial intelligence because, as Turing
himself writes, “it has the advantage of drawing a fairly sharp line between the physical
and the intellectual capacities of a man”.

The Loebner Contest, held annually since 1991, is an instantiation of the Turing Test. In a
recent thorough review of conversational systemsB, Hasida and Den emphasize the
absurdity of performance in the Loebner competition. They assert that a Turing test
requires that systems "talk like people" and since there is currently no system to meet this
requirement, ad hoc techniques make little contribution in advancing dialog technology.

We concur with Turing’'s methods and therefore our approach equates Atrtificial
Intelligence with conversational skills. We further believe that engaging in a domain-
unrestricted conversation is the most critical evidence of the existence of intelligence.

We believe that only an intelligent being can classify another as (also) intelligent and so
we follow Turing’s assertion that a computer program is “intelligent” if (and only if) it “fools”
a human into believing he or she is conversing with another human.

Turing's Child Machine

Turing concluded his classic paper by theorizing on the design of a computer program that
would be capable of passing the Turing Test. He correctly anticipated the difficulties that
Al would face in the decades following his death, writing that “instead of trying to produce
a program to simulate the adult mind, why not rather try to produce one which simulates
the child's? If this were then subjected to an appropriate course of education one would
obtain the adult brain”.



Turing regarded language as an acquired skill, and recognized the importance of avoiding
hard-wiring the computer program wherever possible. He viewed language learning in a
behavioristic light, and believed that the language channel, narrow as it may be, is
sufficient to transmit the necessary information, such as orders, rewards, and
punishments, which the child machine requires in order to acquire language.

Turing wrote that an important feature of a learning machine is that its teacher will often be
very largely ignorant of what is going on inside, although he may still be able to some
extent to predict his pupil's behavior.

It is indeed unfortunate that this promising line of work was mostly abandoned by the Al
community. Today we find ourselves at a crossroads - a paradigm shift is in the air. Many
Al researchers are returning to the behaviorist approach that Turing suggested.

Current approaches to conversational systems

Contrary to Turing’s prediction, no true conversational systems have yet been produced
and none has passed an unrestricted Turing Test. The traditional approach to
conversational system design has been to equate language with knowledge, and to hard-
wire rules for the generation of conversations. This approach has failed to produce
anything more sophisticated than domain-restricted dialog systems. Such systems lack
the kind of flexibility, openness, and learning capabilities that are the essence of human
conversational skills. As far as human-like conversational skills are concerned — no
system has gone beyond toddler level conversation, if at all.

Since the 1950s, the field of Chl|d language research has undergone a revolution inspired
by the works of Chomsky (1957) on transformational grammar on the one hand and the
work of Skinner (1957) on the behaviorist theory of language on the other. Computational
implementations based on the Chomskian philosophy incorporate rules for generating
dialogues and conversations and have yielded disappointing results. It is our thesis that
true conversational abilites are more easily obtainable via the currently neglected
behaviorist approach.

Behaviorism and Al

Child language acquisition: the modern behavioristic approach

Behaviorism focuses on the observable and measurable aspects of lingual behavior.
Behaviorists search for observable environmental conditions known as stimuli that co-
occur and predict the appearance of specific verbal behavior or responses (Owens,
1996) This is not to say that behaviorists deny the existence of internal mechanisms, and
they do recognize that studying the physiological basis is necessary for a better
understanding of behavior. What behaviorists object to are internal structures or
processes with no specific physical correlate that are inferred from behavior. Thus,
behaviorists object to the kind of grammatical structures proposed by linguists and claim
these onIy complicate explanations of language acquisition (Zimmerman, & Whitehurst,
1979) Their approach is functional rather than structural. They focus on the functions of
language, the stimuli that evoke verbal behavior, and the consequences of language
performance.



Skinner argues that psycholinguists should ignore traditional categories of linguistic units
but should treat language as they would any other behavior, search for the functional units
as they naturally occur, and then discover the functional relationship that predicts their
occurrence. Behaviorism is focused on reinforced training since it regards language as a
skill that is not essentially different from any other behavior. Speaking (and understanding
speech) must be controlled by stimuli from the environment in the form of reinforcement,
imitation, and successive approximations to mature performance (sometimes referred to
as “shaping”). Skinner takes the extreme position that the speaker is merely a passive
recipient of environmental pressures, having no active role in the process of language
behavior or development.

According to behaviorists, changes in behavior are explained through the connection or
association of stimuli in the environment and certain responses of the organism. The
process of forming such associations is known as classical conditioning. For example, the
word ‘milk’ is learned when the infant's mother says ‘milk’ before or after feeding, and this
word becomes associated with the primary stimulus (the milk itself) to eventually elicit a
response similar to the response to the milk. Once a word or a conditioned stimulus (CS)
elicits a conditioned response (CR), it can become an unconditioned stimulus for
modifying the response to another conditioned stimulus. If the new CS ‘bottle’ frequently
occurs with the word ‘milk’, it may come to elicit a response similar to that for the word
‘milk’. This way, words stimulate each other and this classical conditioning accounts for the
interrelationship of words and word meanings. Classical conditioning is more often used to
account for the receptive side of language acquisition.

Whereas classical conditioning accounts for the associations formed between arbitrary
verbal stimuli and internal responses or reflexive behavior, operant conditioning is used to
account for changes in voluntary, nonreflexive behavior that arise due to environmental
consequences contingent upon that behavior. Operant conditioning is used to account for
the productive side of language acquisition, being concerned with changes in behavior
that arise from reactions to either rewards or punishment from the environment. All
behavioristic accounts of language acquisition assume that children’s productive speech
develops through differential reinforcers and punishers supplied by the environmental
agents, in a process known as shaping. Children’s speech that most closely resembles
adult speech is rewarded, whereas productions that are meaningless are either ignored or
punished. The behaviorists believe that the course of language development is largely
determined by the course of training, not maturation. Some behaviorists explain that
language is processed as word-sequences or response-chains with the words themselves
serving as stimulus for other successive words. These word chains are also known as
Markov models of sentences (Mowrer, 1960)8. Imitation is another important factor in
language acquisition because it allows a shortcut to mature behavior without the laborious
shaping of each and every verbal response. It can be an exact copy of observed behavior
but is not limited to being an exact one. The process of imitation itself becomes reinforcing
and enables rapid learning of complex behaviors.

The time it takes children to acquire language is viewed as a consequence of the
limitations of the training techniques rather than of the maturation of the child. Behaviorists
do not typically credit the child with the knowledge of rules, with intentions or meanings, or
with the ability to abstract important properties from the language of the environment.
Rather, certain stimuli evoke and strengthen certain responses in the child. The sequence
of language acquisition is determined by the most salient environmental stimuli at any
point in time, and by the child’s past experience with those stimuli. The learning principle of
reinforcement is therefore taken to play a major role in the process of language
acquisition.



The Developmental Model

Application to Al

We maintain that a behaviorist developmental approach to language could Yyield
breakthrough results in the creation of artificial intelligence. Programs can imitate, extract
implicit rules, learn from experience, and can be instilled with a drive to constantly improve
their performance. Language acquisition can be achieved through successive
approximations and positive and negative feedback from the environment. Instilled with
these capabilities, programs should evolve through critical developmental language
acquisition milestones in order to reach adult conversational skills. Language acquisition
milestones are both quantifiable and descriptive measures and systems could be
evaluated using these measures, and could be assigned an age or a maturity level beside
their binary assessment as ‘intelligent’ or ‘not intelligent’.

Success in other fields

Developmental principles have enabled evaluation and treatment programs in fields
formerly suffering from a lack of organizational and evaluative principles (Gleason, 1985°,
Goren et al, 199610). The developmental principles have been especially useful in areas
bordering on the question of intelligence. Normative developmental language data
enabled the establishment of diagnostic scales, evaluation criteria, and treatment
programs for developmentally delayed populations. In other areas, such as schizophrenic
thought disorder, in which clinicians often found themselves unable to capture the
communicative problem of patients in order to assess their intelligence level or cognitive
capability, let alone to decipher medication treatment effects on the patients, the
developmental metrics proved a powerful tool (Goren, 199711).

It Can Be Done

Computational language acquisition

We are interested in programming a computer to acquire and use language in a way
analogous to the behavioristic theory of child language acquisition. In fact, we believe that
fairly general information processing mechanisms may aid the acquisition of language, by
allowing a simple language model, such as the aforementioned Markov model, to
bootstrap itself with higher-level structure.

Markov Modeling

Claude Shannon, the father of Information Theory, was generating quasi-English tests
using Markov models in the late 1940's™.  Such models are able to predict which words
are likely to follow a given finite context of words, and this prediction is based on a



statistical analysis of observed text.

Using Markov models as part of a computational language acquisition system allows us to
minimize the number of assumptions we make about the language itself, and to eradicate
language-specific hard-wiring of rules and knowledge.

To date, conversation systems based on this approach have been thin on the ground 13,
although the technique has been used extensively in related problems, such as speech
recognition, text disambiguation, and data compression“.

Finding Higher-Level Structure

Shannon's Information Theory may be applied to the sequence of predictions made by a
Markov model in order to find sequences of symbols and classes of symbols that
constitute higher-level structure. For example, a character-level Markov model inferred
from English text can easily segment the text into words, while a word-level Markov model
inferred from English text may be used to 'discover' syntactic categorieslS.

This structure, once found, can be used to bootstrap the Markov model, allowing it to
capture structure at even higher levels. It is our belief that combining this approach with
positive and negative reinforcement is a sensible way of realizing Turing's vision of a child
machine.

Proposed Evaluation Metrics

Our evaluation proposal to measure the performance of a conversational system is
composed of both subjective and objective components.

Objective developmental metrics

The ability to converse is complex, continuous, and incremental in nature and thus we
propose to add incremental metrics to complement the subjective impression of
intelligence. Some examples of developmental parameters, which increase quantitatively
with age, are:

= Vocabulary size: the number of different words spoken.

= Mean length of utterance: the mean number of words spoken per utterance.
= Response types: the ability to provide an appropriate sentence form with the
relevant content in a given conversational context and the variety of forms used.

= Degree of syntactic complexity: for example, the ability to use embedding to
connect between sentences and convey ideas.

= The use of pronominal and referential forms:. the ability to use pronouns
and referents appropriately and meaningfully.

Each stage of language acquisition sets the foundation for the next and growth is
progressively measured.



The added value

The incremental measures provide an evaluation of progress in conversational capabilities
over time. The descriptive increments enable capturing specific aspects of conversational
capabilities. Moreover, they enable understanding the nature of the critical aspects that
lead up to the ultimate goal: achieving a subjective judgment of being ‘intelligent’.

The challenge in creating maturational criteria is in combining the parameters into a
meaningful profile or evaluation score. One might expect discrepancies in the
development of the different aspects of conversational performance. For example, some
systems may utter long, complex syntactic sentences, typical of a child at age 5 or above,
but may lag in terms of the use of pronouns expected at that age. The weighting of the
various maturation parameters is far from trivial.

The subjective component

We do not claim that the objective evaluation should take precedence over the subjective
one, just as we do not judge children on the basis of objective measures alone. A
subjective judgment is an important, if not determining criterion, in an overall evaluation.

The judgment of intelligence is in the eye of the beholder. Human perception of
intelligence is always influenced by the expectation level of the judge towards the person
or entity about to be judged (Obviously, intelligence in monkeys, children, or university
professors will be judged differently). Adding objective metrics for evaluating maturity level
will set up the right expectation level for a valid subjective judgment of intelligence.

Accordingly, we propose developmental metrics to establish a common denominator
among various conversational systems, so that the expectation level from these systems
will be realistic. Given that subjective impression is at the heart of the perception of
intelligence, the constant feedback from the subjective evaluation to the objective one will
eventually contribute to an optimal evaluation system for perceiving intelligence.

By using the developmental model, computer programs will be evaluated to have a
maturity level in relation to their conversational capability. Programs could be at the level of
toddlers, children, adolescents, or adults depending on their developmental assessment.
This approach enables not only evaluating across programs but also evaluating the
progress within a given program.

Conclusion and Future Work

We submit that a developmental approach is a prerequisite to the emergence of intelligent
lingual behavior, and to the assessment thereof. This approach will help establish
standards that are in line with Turing's understanding of “intelligence” and will enable
evaluation across systems.

We maintain that the proposed paradigm shift in understanding the concepts of “Artificial
Intelligence” and “Language” will result in the development of groundbreaking technology
that will pass the Turing Test within the next 10 years.
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ABSTRACT

Genera scientific and logical premises lurking behind the art
of measuring complex phenomena, specificaly intelligence, are
explored via fuzzy logic, probability theory, differential equations,
thermodynamics, generalized dimensional analysis, philosophy and
psychology.

KEYWORDS: generalized dimensional analysis, path functions,
fuzzy operators, fuzzy logic, thermodynamics, extensive variables,
intensive variables

0. THERMODYNAMICS, OSs, AND TURING

Thermodynamics is probably the classical and ideal example
of a system-theoretic point of view, and one that is built on the
twin concepts of state and process. Furthermore, it is probably
the only link from physics to the study of living things, which
are most likely the most complex things which humans will
ever have to study. The physical sciences are the easy sci-
ences, it is the life sciences that are the hard sciences.[1]
Unfortunately, physical scientists work with powerful tools,
and life sciences have restricted themselves to working with
much less powerful toolg[1].

Thermodynamics is a perfect example of a science
whose development lead to the improvement of the measure-
ment of a fundamental dimension of physics. It was not until
Lord Kelvin saw some inconsistencies that the concept of an
‘absolute’ temperature scale was created. In measurements of
things such as length, mass, or time we can easily envision the
concept of ‘zero’. But it is not so with temperature. Nobody
knew what the lowest obtainable temperature was. In the argu-
ments in the philosophy of science there exist data-first and
theory-first schools. Here we have a case in which both are
iteratively used. The problem of intelligence is most likely to
follow this pattern of development. If the problemisin an area
that has a well-developed theory, we must try to explain the
phenomenon in terms of the developed theory. It is only when
we cannot that we can start thinking about a new theory, and
this requires datamining techniques.

An Operating System (OS) is a very complex object. It
has been said that “I may not know what an OSisbut | can rec-
ognize one, when | see onel”. The same thing may be said
about intelligence, (or cognitive ability or any of the other

related words such as awareness, consciousness, or autonomy,
or even life)) The Artificial life newsgroup (alife) skipped try-
ing to define life or artificial life. The only serious effort in this
direction was made by Alan Turing. He essentially formalized
the saying about the OS into intelligence. We may not know
what ‘intelligence’ is but we know how to recognize one when
we see one. Apparently when we talk about intelligence, we
are talking about ‘human kind’ or ‘human type' or ‘human
level’ intelligence, or at least ‘living thing’ kind (type/level) of
intelligence. We can say things about this without being able to
define it precisely. It is precisely about this intelligence that
Turing was referring to when he wrote about what is now
referred to as the ‘Turing Test’. He understood all the prob-
lems that involve discussions of this thing called intelligence
many decades ago and offered his ‘Gordian Knot’ solution.
Sometimes thinkers are unable to break through the boundaries
of what has been created. Whitehead claims that Aristotle hin-
dered the development of science for 2,000 years because
nobody was courageous enough to break through the bound-
aries of the box for the sum total of al knowledge for human
kind.

1. MEASUREMENT THEORY |

Normally, in the physical sciences, the possibility that an
instrument may be capable of high precision while not being
able of high accuracy does not occur to people. It can only
occur if the instrument is broken. If the instrument is a very
simple one (such as aruler) we' d see immediately if there was
something seriously (or obviously) wrong. If the instrument is
a highly complex one, then there would be various self-tests.
However, in the social/life sciences creation of ‘instruments’ is
an art. It is quite possible for the instrument to be reliable (pre-
cise) but not valid (not accurate) or vice versa. For example, a
psychologist might decide to create a questionnaire which he
claims measures ‘hostility’. The same person taking this test
(the questionnaire) might obtain different scores at different
times. So habituated are we to measuring things in this modern
age that we scarcely give thought to the possibility that what is
being represented as a number may be meaningless. That isthe
validity of the measurement i.e. that the measurement or metric
actually measures what we intend to measure. In physical mea-
surements there is usually no such problem. Validity aso
comes in different flavors such as construct-validity, criterion-
related validity, and content-validity. Reliability refers to the



consistency of measurements taken using the same method on
the same subject. (Please see Figure 1)
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Reliable Not Reliable Reliable
(precise) (imprecise) (precise)

i Valid Valid
(li\ln(;tc\clﬁrlge) (accurate on average) (accurate)

Figure 1: Reliability and Validity Analogy: One normally expects accuracy
to increase with precision. However in the social sciences they are indepen-
dent.

2. MEASUREMENT THEORY |1

We often need to make things comparable to each other. We
call this normalization. That is most easily done if we use
numbers. For example, one way to normalize test grades is
simply to divide every grade by the highest grade in class. This
guarantees that the highest grade in classis 1.0. In order to be
able to compare one boxing match to another a standard scor-
ing system is used in which the same number of referees are
used to score the bout, and for each round at least one boxer
must be given 10 points. In Rasch measurements, we use
P _ a-9
i-p ¢ @)

where P=Prob{ answering correctly}, o =ability, and & =diffi-
culty of question. However, this is not scale-free. It would
probably be better to use something like

P _a P . o0

-p- 3 O 1op - 1oy @
Inthis caseit is only necessary that both o and & be measured
on the same scale (somehow). Obviously, it would be best for
all purposes to use numbersin the standard interval [0,1].

3. MEASUREMENT THEORY I11

Before we try to normalize quantities we should know what
kinds of measurementswe have. They determineif we can mul-
tiply those numbers, add them, or can merely rank them etc. Ac-
cordingly measurements are classified as: (i) Ratio scale, (ii)
Interval scale, (iii) Ordinal scale, or (iv) Nominal scale.
Absolute (Ratio) Scale: The highest level of measure-
ment scale isthat of ratio scale. A ratio scale requires an abso-
lute or nonarbitrary zero, and on such a scale we can multiply
(and divide) numbers knowing that the result is meaningful.
Interval Scale: The Fahrenheit and Celsiusscalesarein-
terval scales. The differences on these scales are meaningful but
ratios are not. That is what Kelvin found out, and that is what

the absol ute temperature scal e is about. WWhen measuring things
such asintelligence, consciousness, awareness, or even autono-
my, or hostility, we have no guarantee that we are measuring
any of these on an absolute scale. There must be some other
guidelines. One of the guidelinesis obviously the study of var-
ious scales. In theintelligence game, psychol ogists have mainly
relied on the central limit theoremin ‘hoping’ that intelligence
isaresult of many many different things adding up to create a
Gaussian density. Thus they have contrived to make sure that
test results are Gaussian.

Ordinal Scale: The next level on the measurement scale
istheordinal scale, ascaleinwhich thingscan simply beranked
according to some numbers but the differences of these num-
bersare not valid. In the ordinal scale we can make judgements
such as A>B. Thereforeif A>B and B>C, then we can conclude
that A>C. In the ordinal scale there is no information about the
magnitude of the differences between elements. It is possible to
obtain an ordina scale from questionnaires. One of the most
common, if not the most common is the multiple-choice test,
called the Likert scale, which has the choices: extremely likely/
agreeable, likely/agreeable, neutral, unlikely/disagreeable, and
extremely/very unlikely/disagreeable.

Nominal Scale: Thelowest level of measurement and the
simplest in scienceisthat of classification or categorization. In
categorization we attempt to sort elements into categories with
respect to a particular attribute. It ranks so low on the scale that
it was added to the measurement scales later. Even an animal
that can tell food from nonfood can be said to have learned or
can be said to know about set operationsinstinctively.

The most basic and fundamental idea underlying these
scaleswhich is not even mentioned, and which is extremely im-
portant for measurement of complex phenomenain thelife sce-
inces, isthat inthefinal analysis, it isthe human sensory organs
that are the beginnings of all measurement. In the measurement
of temperature, although a difference scale was easy to set up
via the human sensory organs (and induction), it took theory
and scientiststo obtain an absol ute scale for temperature. To ob-
tain adifference scale the only thing necessary was for humans
to note that the liquid in the glass went up when it was hotter.
There was no way to know which was more hot and which less
hot except via our naked senses.

This is/was as basic as knowing the difference between
which of two sticks is longer than the other or which of two
weightsis the heavier one. Similarly in the measurement of in-
telligence, the final arbiter is still the naked human senses. Hu-
mans must make up the tests and decide which is more
intelligent, say a chimpanzee or a dog. There can be no other
way to proceed. The genius of Turing was that he realized this
immediately. Therefore, Turing’s basic intuition is correct. We
might not know what intelligence is but we can recognize it
when we seeit. Secondly, we should probably turn to nature to
find examples and a hierarchy or scaling of intelligences. It
would not be off the mark to accept that all living things arein-
telligent to a degree, and that EI (Encephalization Index) is ba-



sically agood scale on which to compare the intelligences of at
least some living organisms.[2]

4. MEASUREMENT THEORY |V

Before we can even think about whether our measurements are
on an absolute or difference scale we have to make sure that
the objects that we deal with are quantifiable in some way and
that we can measure them (with numbers naturally). Our han-
die on the problem is that the things we measure in physics
(and hence engineering) come in fundamental dimensions. For
example, dimensions of that particular branch of physics called
mechanics consists of M {mass}, L {length}, and T {time}.
For electrical phenomena we need one more dimension, Q
(charge), and for thermal phenomenawe need 6 (temperature).

Then we can entertain the thought of using dimensional
analysis for complex phenomena which is a method of reduc-
ing the number and complexity of experimental variables
which affect a given physical phenomenon, using a sort of
compacting technique. If a phenomenon depends upon n
dimensional variables, dimensional analysis will reduce the
problem to only k dimensionless variables, where the reduction
n-k=1,2,3 or 4 depending on the problem. Since these new
dimensions are products/ratios of the old variables to various
powers, the new dimensionless space has nonlinearly twisted
and compacted the old problem in a way in which we can see
regularity.

These ideas have been put to good use in biology [3].
For example, the mass of an animal grows proportional to LS

but its surface areais only proportional to L2 Thus, asanimals
get larger they have to have larger cross-sections of bones to
support all that weight. So an elephant does not look just like a
large sheep. These ideas have to be taken into account when
prototypes, say, airplanes are tested in wind tunnels. Many
other things having to do with scaling of living things such as
metabolism, oxygen consumption, heat exhaustion, cooling
etc. can be found in Schmidt-Nielsen[3]. For example, one
way to make different animals's brains comparable is to com-
pare not their brain capacities but the ratio of their brain mass,
b, to their body mass B. Until recently, there was no method
that could cluster the variables in similar ways as above so that
nonlinear dimensional compaction was not available, but now
there is a generalized data-driven method.[4]

5. PHILOSOPHY

Why do we do philosophy? One reason is because we do not
want to ‘re-invent the wheel’. If philosophers have already
thought about this topic, we should at least be aware that
thought has been expended and results have been achieved.
Operationalism: The problem of what is being mea-
sured in quantum mechanics was solved during the early part
of this century by ‘operationalism’ an idea (by Bridgeman) that

the operations that are being executed define what is being
measured. As long as everyone does the same thing, we are
guaranteed that we all measure the same thing. In the measure-
ment of something like intelligence, obvioudly, the problem of
validity remains.

Quality vs Quantity: Thermodynamics, gave us the
concept of extensive and intensive variables. It is often
remarked in narratives that a fundamental difference exists
which can be characterized by the words ‘quantitative’ vs.
‘qualitative’. Often what is meant by the word qualitative is
"intensive" since concepts often characterized as a quality can
also be quantified. If asystem consisting of alot of 10,000 TVs
is split into two sets at random, the quality of the two sub-
systemswill equal each other and the quality of the TVs of the
whole original system. A state of asystem is characterized by a
set of parameters. If we split a thermodynamic system (say a
container of gas) in half some of the parameters will obey
X, + X, = X, and others will obey x; = x, = x;. The former
(upper case) are extensive parameters, and the latter intensive
parameters.

Open vs Closed: The concepts open vs closed (endoge-
neous Vs exogeneous) are obvioudy very closely related to
each other. In a closed system there can be no such thing as an
exogeneous variable. At the same time, in general there is
really no accurate or clear definition of what an open systemis.
In thermodynamics from where these ideas are probably bor-
rowed, an open system is one which exchanges mass with its
surroundings. A closed system may exchange heat, and do
work on its surroundings, or have work done on it by its sur-
roundings. Additionally, heat and work are processes. In other
words, they are not point functions, but path functions.

In general in mathematical modeling via differential
equations, the surroundings (forcing or source term) is every-
thing that does not have the system variable in it and usually
put on the rhs. However, when these concepts are specifically
applied to intelligence, we have to clarify what it is that the
system exchanges with its surroundings. The concept can
apply to both exchanging data and or information with its sur-
roundings. At the same time, the word “open” may be used to
refer only to the problem at hand (i.e. if the problem is “ open-
ended”), but then it is not about generalized intelligence but
about a specific problem. To generaize it we will then be
forced to think about what little we know about how the brain
does its work or how to generaize from the mathematical
methodology that presently exists (i.e. logic, probability the-
ory, etc). [1]

Many-as-One: The most fundamental such concept
according to modern math is ‘set’ and forms the basis of logic,
where philosophers are at home. Thisideais the building block
of all systems. A body isnot just aparts list although it is com-
prised of many subsystems thus is not merely a set. We have
many ways in mathematics of treating many thingsasone. A
tensor is a general object of any degree. A zero dimensional




tensor isascalar. A one dimensional tensor is avector or an n-
tuple. A two dimensional tensor is called a matrix. In addition
to this, from computer science we have the latest, and more
flexible concept of hierarchical ordering via OOP (object-ori-
ented programming) in which an object is a set of parameters
without necessarily being merely a set or a vector.

Parallel vs Serial (sequential): This is one idea that
occurs quite often. Some problems are paralelizable. For
example, to dig alarge ditch if we hire 100 workers as long as
they do not interfere with each other, the ditch-digging will go
at arate 100 times as fast as before. However, if | want to send
a message with a messenger, it does not matter if we use 100
messengers. The increase in the number of messengers might
increase thereliability but will not affect the speed of the deliv-
ery. But paralelity also has to do with simultaneity (not always
in time), choices, and substitutability, and logic.[7]

Trade-offs and Logic: We can sometimes trade-off
something for something else in which case these things are
substitutes of some kind. Thisidea shows up in logic as alogi-
cal-OR (co-norm). In the psychology and cognitive science lit-
erature, many different components of intelligence are posited.
It is quite possible that some of these intelligences are com-
posed of other more primitive types. If so, then are some of
these substitutes for each other?

6. PSYCHOLOGY & COGNITIVE SCIENCE

Obviously throughout most of the century those who have
worked on the nature and measurement of intelligence (almost
aways human intelligence) have been psychologists. They
have had recourse to and benefited from methods and argu-
mentation in both philosophy and physics. The kinds of ques-
tions with which they have toiled can be summarized in
modern (and mathematical) terms as:

i) What kind of a quantity isintelligence? Isit binary or
measurable on some scale? What kind of ascaleis appropriate?
Isit an ordinal, interval, or an absolute (ratio) scale?

ii) Isit an additive function of its constituents, the most
important ones for purposes of simplification being hereditary
(nature) and environmental (nurture)? Or is it a multiplicative
function? Isit logarithmic function, an exponential function or
apolynomial function of its variables?

iii) Is it a vector/tensor or a scalar (Spearman’s g)? In
other words, can asingle number be produced from many num-
bers which is meaningful ? s there a hierarchy of intelligences,
some of which subsume some of the others?

iv) Isit astate or aprocess ? In other wordsisit a point
function, or apath function?Isit aquality or aquantity? In other
words, isit an extensive variable or an intensive variable?

v) The nature vs nurture problem: Are the differencesin
intelligence among humans due mostly to heredity or environ-
ment?

There is arelated (and incorrectly stated) version of (v)
which is “Isintelligence mostly genetic?’ The answer is quite
plainly that intelligence is mostly genetic if intelligence is dis-
cussed inits most general form, that isincluding machineintel-
ligence and animal intelligence. However the answer to (V) is
much more complicated.[5]

An amost perfect example of a vector of cognitive sci-
ence is color. We all know what colors are but they would be
virtually impossible to explain to someone who was congeni-
tally blind. If we did attempt to "explain” colors by explaining
that "black is the absence of color and white is a mixture of all
the colors' it is likely that the blind person would think of col-
ors as what we call "gray scale". The analogical question is
whether the components of intelligence that psychologists
have posited are like colors in that they ‘seem’ as if they are
‘unigque’ objects or is there a single number which we may
obtain from the components.[8] Is this single number like col-
orsor isit like the gray-scale?

7. COMPLEXITY AND HIERARCHY

The concept of layering or hierarchy is one of the most basicin
the universe. Whereas hierarchy requires more detailed expla-
nation the concept of layering iseasier to envision and observed
all over the world, at a very coarse-resolution. We use pictures
of all sorts (asin Figure 2).
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1 5 Level 1
12 2 Small Integers
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Figure 2: Highly-suggestive Layering in Mathematics: Knowledge is
built-up in layers. New knowledge is built on top of old knowledge. This has
significance for intelligence testing.

What better example than knowledge? Data is raw. Informa-
tion is data that is meaningful to an intelligent entity. Knowl-
edge must be compressed information. The only way to
compress information is via exploiting regularities and pat-



terns. Since mathematics is the study patterns, and regularities
of all kinds, it is clearly the best tool with which to do science.
Many more examples of layering can be found [1],[5],[6].

Thus the scientificity (intensity) of knowledge must be mathe-
matics. Isit possible to measure intelligence separate and apart
from knowledge? Do we want to weight some kinds of knowl-
edge more heavily than others?

8. DISTANCE & MEASUREMENT

The main problem here is whether, after having gone through
the problem of identifying the various components of intelli-
gence, we should multiply them or add them to create a single
number called intelligence. Therefore two prototypical choices
for distance are
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Obvioudly, in Eq (4) every component must be nonzero. There
are good reasonswhy it is so. If normal functioning of a human
depends on having absolutely no genetic defects, and if the
intelligence of ahuman is determined by n genes, then if any of
them is defective it should effect the score in the same way that
the reliability of a composite is the product of the reliabilities
of its components. In this sense, then the factors are analogous
to probabilities.

Thisis aso how we humans apparently tend to evaluate
intelligence, as can be seen in the schizoid labeling of the con-
dition known as idiot-savant. Being apparently superhuman in
one aspect of intellectual activity is not sufficient to escape the
label ‘idiot’. It is said that an expert knows everything about
nothing whereas a generalist knows nothing about everything.
In an extension of this, then, today’s experts (i.e. engineers) are
idiot-savants. Their socia |1Q is said to be low. Programs like
Maple, then, are also idiot-savants.

9. AVERAGE-IZATION

Consider the problem of being a juror in a beauty pageant. We
will be forced to use akind of scalein Eq. (5) (below)

a.

n
|_| |:{Xj_l1j} J}
g=

where the ; are the means. For example, the features/proper-

ties (of the vector x) may be nose length, skin color, lip thick-
ness, fatness, etc. We will not want to vote for those with lips
too thin or too thick, with nosesthat are too long, or too short,
legs too thin or too thick, skin too pale or too dark. In other
words, we are not looking for the minimum or the maximum
but rather the most perfect average there is (with some cave-
ats). Thisisadifferent kind of logic, triage logic [10].

Then, the human-kind of intelligence, if it is going to
resemble what we humans normally think about perfection

B(X) = 1- (5)
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(apparently) should be measured via
1
n %70
109 = 1= [ -3 (6)
i=1

where the {x} are the various attributes of intelligence. The
Turing test is probably for this kind of intelligence. For exam-
ple, a machine that can solve differential equations and multi-
ply 20 by 20 matrices in a jiffy (such as Maple, a Computer
Algebra System) would flunk the Turing test. A human would
know that a norma human (or maybe even an abnormal
human) cannot do that. Therefore, the machine that could pass
the Turing test would either have to be designed dumbed-down
or it would have to learn to deceive. There are other things
machines can do very quickly that humans cannot accomplish.

Thus the ‘measure’ above would show that such an
entity could not be human (ceteris paribus, of course). In other
words, as long as the machine is able to do the other things
more or less as a human, then overachieving (outdoing
humans) in one of the dimensions of the vector space would
mark it as amachine.

Exactly the same would apply in some other capability
such as being able to lift a few tons, swimming or running at
superhuman speeds etc. For machines, then locomotion, would
also be treated as part of intelligence. However, since even
lower animals (less intelligent than us) can move around, it
should not contribute much to the measurement of intelligence.

There are some pyschologists who want to include
many human capabilities, such as physico-kinetic intelligence
(i.e. physical ability) in the intelligence equation. Therefore,
this ‘autonomy’ capability of animals/machines may aso be
considered to be a part of intelligence. We may take those that
have been posited by psychologists as a starting point keeping
in mind that some of them may really be substitutes for each
other so that the measurement might be more complicated.



10. MORE SOPHISTICATION

Consider the simple problem of nutrition. Suppose we can cre-
ate a balanced diet from the few foods available from three
separate food groups; meat (protein), carbohydrates, and vege-
tables as shown below.

Figure 3: Parallel or Serial Choices. The problem is actually about multi-
plication vs addition. Diagrams such as this occur in electrical circuits, Bool-
ean circuits [9], or choice making.

In terms of circuit analysis (which can be thought of in terms
of Boolean algebra, [9] it is clear that the parallel lines are
about choices (and thus lack of constraints) and therefore rep-
resent logical-OR (digjunction), whereas the seriality/sequenti-
ality denotes a logical-AND (conjunction). Probably the first
thing a statistician would do if faced with the problem of deter-
mining the relationship between food groups and a balanced
diet would be to try correlation-regression analysis which
would be nothing more than

N = 0(0+0(1t+0(2m+...+ornc @)

where t=tuna, m=mutton, c=corn etc. This is really the same
kind of valuation of the problem as a weighted average. How-
ever, if we think logically then we should be considering a
function of form;

N = MCV (8)
since we need to ingest food from all the groups. Furthermore,
since these food groups may be instantiated via specific exam-
ples, then using fuzzy logic, we should be regressing one of

N=(t+m+d+v)(b+a+k+c)(z+p+r) (99)
N=(t+m+d+v)i(b+a+tk+o)Pzepeny (o)

Obvioudly, thelatter form (Eg. 9) isnot only correct but will re-
sult in many products (possibly to various powers). It is exactly
this kind of products that dimensional analysis produces how-
ever it works only for problems with physical dimensions.
However, there are methods that will produce similar equations
for any problem if sufficient amount of datais available [4]. If
intelligence-measurement is at least as complex as that of prop-
er nutrition, then the simple weighted average kind of methods
which are additive will not work. In other words the regression
in Eq (7) is something like a combination of logical (or fuzzy)
ORs and ANDs. A question that comes to mind is if there are
fuzzy operators which are neither OR nor AND but something
like both and exactly like neither. The special functions[11]

Hyxy) = 3 cey)" (100)
m 0 ‘ 2 [m+1
M (%) = 2 EH—J—%?—E (10h)
Dl(x-y)77 U

or others similar to these can be used in cases in which we are
not sure if additive or multiplicative models should be used.
One can show that [11]

Max(x,y) = H,(xy) + M (xY) (118)
Min(x,y) = Hy(x y)-M (% y) (11b)

Therefore the operator (fuzzy t-co-norm)
Fuy) = Ho(xy) + (26— DM (xy)  (110)

is neither a norm (intersection) or conorm (union) but a fuzzy
operator or a fuzzy norm since it isanorm for £ = 0 and a
conorm for & = 1. Some of the present day attributes of
intelligence posited by psychologists probably are substitutes
for each other and thus Eq (6) might distort the measurement.
Therefore, something like Eq (9) where the additions are fuzzy
unions and fuzzy intersections will probably give better
results. The equations are readily and intuitively
comprehensible in terms of theory of reliability based on
probability. Fuzzification of the norm-conorm can be done for
any fuzzy logic. For example, the simple product/sum logic
given by

i(xy) = xy (129)
u(x,y) = X+y-—xy (12b)

can be easily fuzzified via
F(xy) = pxy+(1-p)(x+y—xy) (12¢)

11. HUMAN INTELLIGENCE

The main problem today in human intelligence tests (and
genetics) is calculating how much of intelligence is ‘inherited’
and how much of it islearned. There are several waysin which
the model for this may be derived. One way would be to point
out general conditions which the ‘intelligence function’ must
satisfy. It should be multiplicative. It should display the
increase of intelligence in time from the time of birth. It should
converge on some limit on average for the people while being



allowed to fluctuate about the average rate of increase and the
limit of human intelligence. The equation

dx

i Ao —x) (13)
increases exponentially, and converges to a limit which is a
good approximation. We need to know what the parameters
mean, and this can be gleaned from the behavior of the solu-
tion. In Fig (4a) we see several trgjectories. Some converge to

above average intelligence, and some to less than average.
Obviously the coefficient a determines this limit.

>

Figure 4a: Variationsin o of the Intelligence Model .

In Fig (4b) we see afluctuation in the rate of increase of intelli-
gence, and thisis controlled by the coefficient A .

A

Figure 4b: Fluctuations in A of the Intelligence Model

Logically both of these parameters then should be a function of
both genetics and environment. Since we have determined that
multiplicativity isimportant, the model should be

%I(t)+)\GnE€(t)l(t) =" E N e

Integrating it once and rearranging terms we obtain the integral
equation

t ¢
I(t) = K(t)-AG I E (0)I(0)do (15a)
0
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t
with K(t) = aAGh+nI E  (9)0s (15b)
0

which is exactly what most researchers claim, that is, intelli-
gence at time t, that is I(t), is afunction of the past interaction
of intelligence with environment summed up over time from
time zero (birth) to the present timet. Theinteraction is multi-
plicative as it should be, and the equation is a reasonably good
approximation over time of how living things (especialy
humans) learn. The solution is

t 0
n € n €
AG J'OE (T)dt . AG J'SE (T)dt
I(t) = Te IE (s)e ds (16)
0
_ h+n L. -
wherem = Aa G which in the limit goesto
| = ae%G" (17)

If one day robots which learn from their environment are cre-
ated, similar equations will be good first order approximations.
Same probability techniques can be used on these equations,
and statistics such as ‘heritability’ can be calculated. If the
multiplication above is treated as some kind of a fuzzy inter-
section, then we can see quite clearly that the same kind of an
equation can easily ‘explain’ the existence of natural language
among living things. At the limits the equation must reduce the
crisp logic, and we can see that it does. Only in the case when
both genetic capability is there and when there is proper envi-
ronmental stimulation, does language exist. If one or the other
is missing there is no language. We can show how this equa-
tion explains what psychologists have said (in words) for a
long time. Computing the virtual variation, we obtain for the
special (and simplercase) of e=h=a =1

dl = EHH +H [WE (18)

If the environment is enriched, the corresponding increase in
intelligence depends on the genetic capability. Thus putting a
dog in school cannot give it human level intelligence. Simi-
larly, if there is a change in the genetic make-up (e.g. the dif-
ference between a chimp and a human) the change in the
intelligence depends on the environment. A human brought up
without human contact cannot walk or talk or dress up.



APPENDI X
Exact Differentials and Path Functions

The distinction between the related concepts state and process
is an important one. There are mathematical definitions and
consequences of these ideas. A state (or property) is a point
function. The state of any system isthe values of its state vector
(abundle of properties which characterizes asystem). If we use
these variables as coordinates then any state of the systemisa
point in this n-dimensional space of properties/characteristics.
Conversely each state of the system can be represented by asin-
gle point on the diagram (of this space). For examplefor anide-
al gasthe state variabl es are temperature, pressure, volume, etc.
Each color can be represented as a point in the 3-D space
spanned by the R, G and B vectors. Intelligence is commonly
accepted to be a state variable, i.e. a point. The scalar, Spear-
man’s g, (single number, not avector) can be obtained from this
vector by using adistance metric. The argument that the values
of the components cannot be obtained from the scalar, g, may
be valid depending on the distance metric however, the distance
metric may be devised in away in which the components can be
obtained from the scalar. Distance on a metric space is a func-
tion only of the end pointsi.e. between two states. However, the
determination of some quantities requires more than the knowl-
edge simply of the end states but requires a specification of a
particular path between these points. These are called path func-
tions. The commonest example of a path function is the length
of acurve. Another example is the work done by an expanding
gas. S0isQ, the heat (transferred). In that sense work and heat
areinteractions between systems (i.e. processes), not character-
istics of systems (i.e. state parameters/variables). Intuitively,
when wetalk about small changes or small quantitieswe usethe
differentials dx or dx. However the crucial differenceisthat al-
though there may exist a function such that

a a
JdF = ficock = F(x)|2 = F(a)-F(b) (A
b b
thereis no function Q, (heat) such that
a
f3a = Qu| = Q@) -Q(b) (A2)
b
Instead we write
b
J3a = Qq (A3)
a

meaning that Q, is the quantity of heat transferred during the

process from point a to point b. Similarly because the infinites-
imal length of acurvein the planeis given by

ds = «/dy2 + dx2

(A4)
we cannot integrate ds to obtain
b b
S(b) - Sa) = Ias = J’ds (A5)
a a

but instead first the curve y=f(x) must be specified. Equivalent-
ly, if zisafunction of two independent variables x and y, and
this relationship is given by z=f(x,y) then z is a point function.
The differential dz of a point function is an exact differential
and given by

dz = %4y + P4ay (A6)

Consequently if a differential of form dz = Mdx+ Ndy is
given, it is an exact differentia only if

oM _ ON
dy 0z
Thereforein the mathematical function used for the simple two-
factor (nature-nurture) Intelligence Function the environmental
path taken does make adifferencein thefinal result whichisas-
sumed to be a state function (although computed from mental

processes).

(A7)
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Extended Abstract

1. Introduction

Aspects of the researchThe concept of evaluating the intelligence of systems presented
in this paper is based upon the model of intelligence outlined in [1] and the advancements in
visualization described in [2]. Since the main mechanism of intelligence is the mechanism of
generalization, it would be prudent to judge the degree of intelligence by the ability of the system to
generalize. This ability can be detected by the means of visualization. Visualization of the system
and/or the situation allows us to use the primary orientation of our visual capabilities to the
situations and/or modes of functioning based upon “gestalt” i.e. capabilities to form a harmonious
and consistent entity out of details.
We will explore the unique ability of the visualization systems to diagnose the system and/or its
state by discovering thgyndrome a group of symptoms, or diagnostic features that collectively
indicate or characterize a disease, a psychological disorder, or another abnormal condition which
has some unity within itself. We will use the term syndrome for technological cases either to
characterize some psychological disorder based upon an intrinsic or other unity. For example, a
multiplicity of unfortunately coinciding factors can lead to a catastrophe. Thus, for this particular
catastrophe, the combination of these factorssi;ydrome

Thus, our approacls pursuing two major goals. First, our intention is to solve the
unsolved yet a fairly complicated problem of data mining and interpretation. This is a central
problem of intelligence functioninghow knowledge can be extracted from raw dafa
visualization. Solving this problem would require analysis of the real world situations and
constructing their models by effectively combining formal, verbal and even non-verbalized models
of analyzed knowledge. It turns out that visualization can help the human decision maker to
associate these diversified models and to formalize the new knowledge for the subsequent use in
both manned and unmanned intelligent systems.

To accomplish this goal a human-computer dialog has to be constructed at each step of
visualization. This dialog is aimed into restoration and analysis ofidrarchy of features and
descriptiondor states, situations, and scenes. It should provide for fast and accurate discrimination,
description and understanding kifiown andnew situation and their reasons. A visual-verbal
language is created as a part of this dialog for each case of analysis individually. This approach
provides effective selection of new models for discovered singularities, observed changes of
situation, detected structures, etc.

An effective interpretation of visual-verbal results in terms of data properties and known
models is the result of this approach. Although the human participant is a must, and there is no
automated procedures to rely upon (as follows from its goals), a number of important advantages
can be registered in comparison with automated systems neural networks, pattern recognition, etc.
To get the good interpretation we use $ivaple data mapping into picturesid the human natural
“gestalt-skills” for determining entities in these pictures.

Principles of the Human-Computer Dialog for Picture Analysis.The following main
components of oudialog realizationdistinguish our approach from others by more effective use of
human cognition:

1. Constructing holistic images of exhaustively represented data about situHtitme

number of variables in a situation is more than 20-30, the matrix N*M is to be analyzed where each
row displays a time series of one variables or each cell represents a current value of separate
variables or others. A variable value is mapped into color-brightness. The ability to simultaneously



represent more than 1000*1000 numbers and to see some “general image” of situation is considered
to be an advantage of our realization. This starting image allows for understanding a holistic
structure of the situation, for detection some of the available skeletons, and for mapping its different
properties into levels of some hierarchical organization that will direct the subsequent informative
feature search.

2 Combinatorial Searching in the Matrisy permutations of rows, columns and cells. For each
permutation the following is performed: sharpening the edges where required, smoothing where
possible, value-to-color mapping adjustment where beneficial, etc. to get more informative, more
interpretable image or at least to improve of its quality.

3. Mapping from matrix to entities: individual patches, group patches, clusters of groups.
Informative variables and features found as a result of matrices permutation can be visualized by
grouping the elementary units of image together. Thus, only tens of variables will be displayed at
the levels of lower resolution but with complete mapping of their relationships within the image.
This allows to determine shapes and more general forms that are more effective for visual analysis
than color variation in the primary high resolution crowd of elementary patches. The dialog with
generalized levels consists of a searching group variables and relationships among them.

4. Selecting appropriate criteria of decisiorisis important to underline that if no pior knowledge
and/or hypotheses exist, then forming a syndrome is done based upon human gestalt skills and
experiences.If there is some knowledge of situation and its evaluation criteria, the process of will
synthesize this knowledge with the gestalt intuitions.

Pattern Analysis by Human Vision: Can It Be Automated?Human vision has an ability
to quickly and efficiently compare several images in parallel with hundreds of local attributes and
features related to the shapes, textures, colors, or brightness of the images. A standalone spot on a
picture or a spot cluster has certain boundaries shapes which can be segmented using simple local

features such as “straight line”, “concave”, “convex”, “angle”, “hole”, etc. These features have
attributes as “sizes”, “orientation”, “symmetries”, etc. and are connected by means “upper-lower”,
“left-right”, “inside-outside” adjacency. Local features are visually unified into more complicated
shapes as “wave”, "leaf”, "a face profile” and others associated with real world objects and also
have above mentioned and more complicated attributes.

This process of feature generalization continues up to holistic image of a spot including
also its integral features as “complexity”, "symmetries”, “elongations” besides usual sizes,
orientations, and position on the picture and others. In addition, the color and textural properties can
be described. These attributes and features are then organized into a multilevel (multiresolutional)
hierarchy that can be partially verbalized, or at least, tagged with symbols. If a picture contains
many different separate shapes, such hierarchy can be constructed for these shapes clusters and
clusters groups up to all picture. In addition, the combinatorial and statistical features could be
visually detected and estimated. Vision rapidly moves through this hierarchy, searching for more
details or generalizing the attributes allows for the simultaneous examination of many facets of the
image by means of a variety of attributes and features.

Automated Description of Visual Patterns. Combinations of disjunctions and
conjunctions of features Qi and their attributes Ai can be applied for formalizing human
representation of patterns. So called conjunctive normal form (CNF) describes some pattern with
variation of features attributes, e.g. [‘middle size”[ ®dD Qb [which is “symmetrical” around
axis Ac]AND Qk [known to be “small concave” and located in Ai (k) (e.g. position)]. Disjunctive
normal forms (DNF= CNF, OR (Q, v Ay OR CNFR) from separate features or complicated
patterns describe picture classes with supplemental patterns. These descriptions are invariant for
global rotations, shifts and projective transformations of whole shapes as well as their parts (with
some limits). Similar formal tools can be applied with the purpose to formalize many other
elements of the human-computer dialog. The transfer of knowledge from a human to a computer
can be performed by using a subsystem of learning.

The following components of our research should be outlined:



2. Analysis of theoretical and experimental fundamentals that suggests that automated
visualization is efficient in discovering entities, syndromes, and singularities.

Phase 1 Development of Automated Visualization System for Decision Making.
Usually data visualization istauman-computer dialogith the following general structure :
Stage 1. Entering data into the system and their consecutive processing in subsystems 1-4
Subsystem 1. Data gathering, transformation, filtration.
Subsystem 2. Mapping Data into visual paradigm, e.g. pictures.
Subsystem 3. Computer supported human visual analysis of the visualized data: features selection
and transformation of situations into a visual relational map.
Subsystem 4. Comparison with a priori knowledge related to the features and the multi-feature
formations and search of new ones.
Stage 2. Change of the chosen set of variables and parameters for the analysis and repetition of the
cycle Of consecutive running of Subsystems 1-4.
Stage 3. Estimation of results, hypothesizing entities (syndromes), testing it through Subsystems 1-4
again, formalization and decision-making.
These three stages are run presently as a human-computer dialog that can have cycles between these
stages in any order assigned by a human. We intend to automate this process by equipping the
human-computer dialog processes by learning subsystem.

The strategy and the techniques of implementing the subsystem of learning and subsequent
conducting the interpretation of results will be determined by the following factors:
- goals are pursued within a particular domain and assignment
- limitations of combining human and computer capabilities
- available algorithms of generalization and instantiation
- metrics accepted for evaluating the performance and intelligence of the system.

Phase 2 Application of Automated Visualization System for evaluating performance and
Intelligence of Intelligent Systems.

In this case, the result of learning from the human during the human-computer dialog will
be used for both: a) automatic analysis of data and b) for evaluating the performance and
intelligence of intelligent systems.

Assume, an intelligent computer vision system has performed image processing. As a result of this,

a particular image underwent a multiple generalization and the results of this are presented as the
result of image analysis and interpretation. Let us consider another case: an intelligent system has
planned a motion trajectory for an unmanned vehicle. In order to evaluate the intelligence of these

systems, their problem solutions are presented to the automated system of visualization. The
structure of the image and the structure of the motion trajectory are visualized and the prospective
syndromes are obtained. The results of visualization are compared with the results of processing by
the system undergoing testing. This comparison serves as the estimate of performance and
intelligence.

Visualization can be used not for states but for the state-space trajectorids.seems
natural to expand the process of visualization from evaluation of states and situations to evaluation
of state space trajectories as a whole. This would allow for comparison of different system
behaviors by means of visualization of appropriate data. The results of visualization in this case are
not theimages or picturesbut rathermovies There is plenty of evidence that the gestalt abilities
can be applied not only to static images but also to their consecutive strings that represent
processeskinding a temporal unity of a process is the problem that has never be proposed before as
a problem for the system of automatic visualization.

Intelligence is defined as a faculty of a system that increases the probability of successful
functioning in a variety of problem solving situations and under uncertainty of the conditions of the
environment.



When systems function, the results of their functioning reflect not only changes of the environments
and the goals assigned but also the results of their control system generating decisions and shaping
processes. The consistency of control system functioning will be reflected in a temporal gestalt of
processes that are generated as a result of control. It is our hypothesis that one can judge the control
system by observing the output and not only measuring how close it is to the output specifications
but also howsatisfactorilythe system responds to all changes. Since, the construction of a metric
that evaluates responses to all changes is a problematic one (H-infinity is one of the efforts) and
since the combination of uncertain circumstances has unlimited number of possible combinations,
we assume that using the natural ability of human vision to register and recsiggiziarities of

external images, the ability to distinguish differences in response can be detected via visualization.

3. Existing Experience of Using Visualization for the Purposes of Recognizing
Singularities in Functioning Systems Confirms Our Hypotheses

Our experiences in visualization system development for human decision making support has
shown that appropriat#ata visualizatiorcan :
- drastically enhance efficiency in comparing different approaches of intelligence,
- specify the most effective field of each approach application and combine many of them to built
an

intelligent system for wide diversity of environment variations and control tasks ( or
whatsoever...),
- extend this system capabilities for some set of important but uncertain (unpredictable) situations
by means their holistic visualization and recognition in real time.

Gas-turbine engine diagnostics in airplanes and search for the cardiology diagnostic syndrome
demonstrate capabilities of visualization techniques (see Figure 1 and 2). Analysis of existing
experimental data allowing to expect that the proposed method of intelligence evaluation can be
successful. Pictorial visualization has allowed to analyzetrrgsition modes of engines and
temporal processes of human heart functioning. As a result, the effect of much earlier symptoms of
many malfunctions in th&ansition modes of operation were discovered to be different from the
static modes, and more reliability of conclusions was achieved.

Interpretation of the successful use of visualizatioriThe following factors were taken in account:
-What was special in the way we have arranged the process of visualization
-What does it suggest for the future organization of visualization
-The “Hypothesis of Visualization” that we have arrived at
-Introduction of the concepts: temporal gestalt, dynamic syndrome, visualization of transition
modes.
The recommended use of visualization for intelligence testing include:
-The specifics of intelligence testing
-The similarities of the case of intelligence testing and examples
-Restatement of the Hypothesis of visualization for the case of intelligence evaluation.
- How it will be applied for the cases of
. planner/controller for industrial crane
. autonomous unmanned vehicle
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